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Abstract

Microplastic in the oceans might interfere the health of marine organisms,
including the green mussels (Perna viridis). This is due to microplastic
accumulation in mussels organs, such as gills, hepatopancreas, and gonads.
Therefore, tissue alteration is a good indicator for ecological risk analysis and
other ecotoxicological study activities. Green mussels with shells 4.1 to 5.0 cm
in length were collected from Mandalle waters, Pangkep Regency (Pangkajene
Islands), Indonesia. Green mussels were exposed for seven days to microplastic
with concentrations of  0.05 (A), 0.5 (B), and 5 (C) g/L. The results showed that
the higher the concentration of microplastics exposed to the green mussel, the
higher the accumulation of microplastics in the body of the mussel, within the
tested concentrations. The increased concentration of microplastics increased
the level of tissue alteration in the gills, hepatopancreas, and gonads, with the
most sensitive organ being the hepatopancreas. Overall, the study confirmed
that the histological assay of mussel organs could be used as a biomarker in
ecotoxicological studies.
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Introduction

Plastic is light, strong, durable, inexpensive
(Gamarro et al., 2020), and corrosion-resistant. It is
also a good thermal and electrical insulator (Dowarah
et al., 2020). These versatile characteristics have made
plastics extensively used in daily life (Gamarro et al.,
2020). The amount of plastic waste has reached 368
million tonnes since it was produced in the 1950s
(Plastics Europe, 2020). In 2100, about 9.6-48.8
particles/m of plastics are predicted to float around
the ocean  (Prokic et al., 2019). This rapid increase in
the production and distribution of plastic materials has
an enormous impact on the environment and ecology
(Prokic et al., 2019) because they are naturally difficult
to degrade (Ma et al., 2019).

Plastics exist nearly everywhere in the environment,
i.e., water, soil, air, etc (Sun et al., 2020).
Approximately 1.15 - 2.41 million tons of plastic waste
enter the oceans and keep increasing every year
(Lebreton et al., 2017). Blettler et al. (2018) said that
87% of plastic pollution studies are related to marine
environments and only 13% to freshwater systems.
The plastic debris existence in the environment has

attracted the attention of researchers, policymakers,
the general public, and various environmental institutions
(Gray et al., 2018).

Plastic particles with sizes less than 5 mm are called
microplastics (Peixoto et al., 2019). Plastic materials
are composed of polymers with varying types, sizes,
shapes, and chemical compositions (Kühn et al., 2018).
Microplastics may contain chemical pollutants like
plastic monomers and additives that adsorb toxic
contaminants from the marine environment (Boyle et
al., 2020; Fernández et al., 2020; Luo et al., 2019;
Zhang et al., 2020). Moreover, they could act as an
additional exposure pathway to marine pollutants then
transfer the hydrophobic contaminants to aquatic
organisms (Webb et al., 2020). Hence, the impact of
microplastics on marine life Occured individually and
integrated with other marine pollutants (Gu et al., 2020).

Furthermore, the effects of microplastic exposure
are varied across different marine and freshwater taxa
(Foley et al., 2018). Microplastic exposure might affect
feeding behavior, growth, reproduction, and survival
(Galloway & Lewis, 2016). The size of microplastic
makes them unintentionally consumed by various
organisms, such as zooplankton (Botterell et al., 2019),

mailto:khusnul@unhas.ac.id
https://doi.org/


worms (Revel et al., 2018), mussels (Scott et al.,
2019), sea urchins (Murano et al., 2020), and also on
early life stages of marine bivalves (Bringer et al., 2020).
Microplastics are bioavailable in every organism in
trophic transfer by ingestion, bioaccumulation, and
biomagnification (Au et al., 2017).

The mussel could accumulate microplastics during
filter-feeding (Woods et al., 2018). Microplastics enter
and meet the surface of the gills, then captured and
trapped in the mucus. Thereafter, they will go through
two processes. The first one is assimilated with the
gill epithelium, or transported into the mouth and
hepatopancreas (Bråte et al., 2018; Kolandhasamy et
al., 2018). The second process is related to the feeding
process, independent of the type of microplastics (Wei
et al., 2021). Microplastic particles can reduce feeding
activity through decreased filtration rate (Pedersen et
al., 2020), affecting the immune (Sýkdokur et al.,
2020)  growth and reproduction systems (Chae & An,
2017). They might change tissue morphology and even
lead to tissue necrosis (Bråte et al., 2018).

Mussels are widely distributed, easily accumulate
microplastics, and closely related to the food chain,
making them a good sentinel organism for microplastic
pollution (Li et al., 2019). They have physiological
properties and biomarkers appropriate for assessing
the effects of multiple stressors following environmental
disturbances (Webb et al., 2020). Bivalve histopathology
has become an essential instrument in aquatic
toxicology, performed by many biomonitoring
programmers worldwide (Cuevas et al., 2015). Woods
et al. (2018) evaluated the ingestion rate and fate of
microplastics taken up by Mytilus edulis; meanwhile,
González-Soto et al. (2019) used M. galloprovincialis
as a sentinel organism to observe the long-term effects
of BaP-polystyrene exposure. Moreover, Webb et al.
(2020) used Perna canaliculatus to examine the impact
of microplastics individually or combined with
triclosan. Dowarah et al. (2020) also used P. viridis to
analyze the accumulation of microplastics from three
estuaries.

Evaluating microplastic exposure in organisms from
the natural environment is challenging. This is due to
the microplastic heterogeneity and low abundance, in
the wild. The effects of microplastics are also difficult
to be distinguished from those of other xenobiotic
(Prokic et al., 2019). Therefore, laboratory-based
studies are necessary to generate potential impacts of
microplastic exposure (Kühn et al., 2018). Most
studies about the toxicity of microplastics have focused
on their impacts on marine invertebrates and vertebrates
in laboratory conditions (Prokic et al., 2019).

There are not many studies that determine the tissue
damage of green mussel organs exposed to

microplastics. Information on tissue alteration is
important to conduct ecological risk analysis and other
ecotoxicological studies. Consequently, this paper will
discuss the tissue alteration of green mussel P. viridis
due to microplastic exposure.

Material and Methods

Sample Collection

A total of 144 green mussels ranging from 4.1 to
5.0 cm in size were obtained from Mandalle waters,
Pangkep Regency (Pangkajene Islands) in July 2019
(dry season). Green mussels were cleaned from
biofouling, acclimatized for 14 days in an aquarium
before the experiment, and fed with 1.2 g/L Spirulina
sp daily before medium replacement (Rist et al., 2016).
The acclimatization condition of the laboratory
aquarium was as follows: 30 L seawater at 28 OC
temperature, 35 O/OO salinity, and cell density of 77 x
106 cells/L (Yaqin et al., 2019). Prior to daily water
replacement, pH, temperature, DO and salinity were
measured (Lee et al., 2013).

Microplastic Preparation Methods

Microplastics were extracted from a commercial
bath scrub. The bath scrub was dissolved with water
then filtered using three different sieves (0.075, 0.125,
and 0.180 mm). The particles were placed into a petri
dish then heated in the oven at a temperature of 90 OC
for 48 h (Bråte et al., 2018).

Exposure and Experimental Design

The samples were divided into four categories of
treatments, i.e., control (no added pollutant), 0.05 (A),
0.5 (B), and 5 (C) g/L of microplastics,  in triplicate
(Santana et al., 2017). Each of microplastic
concentration used in this study was higher than those
observed in the natural habitat (Colen et al., 2021).
Approximately 0.1 g of the added pollutant contained
3,309 ± 239.4 microplastic particles.

Every 12 green mussels were placed in an aquarium
containing five liters of seawater from Sea Ranching
and Ecosystem Rehabilitation Laboratory, Hasanuddin
University. The seawater was filtered with Unilever
Pure It Water Purifier. The green mussels were exposed
to bath scrub microplastic mixed with Spirulina sp
and starch flour as added pollutants for seven days
(Paul-Pont et al., 2016).

The media was changed every day (Pittura et al.,
2018) to ensure the depurated microplastics by the
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green mussel, and were not re-filtered by the tested
animals (Cauwenberghe & Janssen, 2014). Water
quality measurements (pH, temperature, DO, and
salinity) were carried out immediately before the media
water replacement (Lee et al., 2013). The aquarium
was aerated during the experiment to maintain the
oxygen concentration required by the green mussels.

Microplastic and Histological Analysis

After seven days of exposure, the green mussels
were removed from the aquarium; hereafter, the
microplastics attached to the shells were cleaned using
seawater. The green mussel tissue was dissected and
transferred to a bottle containing 10% KOH solution.
The volume of the KOH solution was three times the
weight of the mussel tissue. Afterward, the tissue was
stored for seven days at room temperature to digest
the organic matter (Rochman et al., 2015). The
dissolved green mussel tissue was then filtered using a
vacuum pump by a 0.45 µm sterile membrane filter.
Subsequently, the filtered microplastics were directly
calculated and analyzed under a stereo microscope
(StereoBlue - Euromex).

Histological analysis was performed to analyze
tissue alteration of the gills, hepatopancreas, and
gonads. The target organs of the mussel were dissected
out from the mussel shell and fixed with Bouin’s solution
for 24 h. The organs were dehydrated using ethanol
and xylene sequentially (80–100%) and embedded in
paraffin. The embedded tissues were cut into a 4 µm
section and mounted on a slide, followed by fixation
and stained using hematoxylin-eosin according to the
standard procedure. The stained slide was observed
using a microscope (Olympus CX-23) for histological
analysis (Arrighetti et al., 2018; Asaduzzaman et al.,
2019).

Calculation of Histological Index (Ih)

Determination of gills, hepatopancreas, and gonads
alteration can be seen in Table 1. The table summarized
the observations of Bouallegui et al. (2017), Costa et
al. (2013), and Cuevas et al. (2015). Each alteration
has a different significance value (wj) (ranging from 1
- 3), and each wj value was followed by a score (ajh).
The score was assigned level 0 (no damage), 2 (minor),
4 (moderate), and 6 (severe). The provision as followed:
the value of wj = 1 for a = 2, wj = 2 for a = 4, and wj
= 3 for a = 6. The histological index (Ih) of the gills,
hepatopancreas, and gonads was calculated using the
formula of Costa et al. (2013) as follows:

Note:
Ih   = histological condition indices
wj  = the weight of alteration
ajh  = score of attribute
Mj  = the maximum attributable value

Data Analysis

The normality and homogeneity tests were used to
process the data before analyzing the variance. The
differences in microplastic accumulation were analyzed

statistically using Parametric ANOVA followed by post-
hoc analysis. The histological alteration was observed
descriptively.

Results and Discussion

Microplastics Accumulation

The average microplastic accumulation by green
mussels in treatments A, B, and C were 109, 186, and
244 particles/individual, respectively (Figure 1). The
statistical tests showed significant differences (p<0.05)
in the total microplastics between treatments A and B
also A and C. However, there was no significant
difference between treatments B and C, despite the
increasing trend. The results showed that the higher
the concentration of microplastics exposed to the green
mussel, the higher the concentration of microplastics
in the body of the mussel, within the tested
concentrations.

Tissue Alteration

The histological feature of the target organs reflected
the health condition of mussels due to microplastic
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Table 1. General histological alteration of mussel organs

Organ Reaction pattern Alteration wj

Gill Cell alteration Lamellar fusion (Lf) 1

Hyperplasia (hp) 2

Loss of epithelia (Le) 3

Necrosis (n) 3

Hepatopancreas Tubule alteration Vacuolisation (v) 1

Hyperplasia (hp) 2

Tubule regression (tr) 2

Necrosis (n) 3

Intertubular alteration Necrosis (n) 3

Gonad Cell alteration Hemocyte infiltration (hi) 1

Necrosis (n) 3



Figure 1. The number of microplastic particles in the body of
green mussel at each treatment.

Note: Different letters indicate significant differences at p<0.05.

exposures (Bråte et al., 2018). The comparison between
control and the treatments showed no histological
alteration in the control. Green mussels exposed to
microplastics with various concentrations for seven
days showed tissue alterations or damages in each
organ. The level of alteration increased along with the
increase of tested microplastic concentrations (Figures
2-4). Treatment A caused the gill tissue to experience
hyperplasia. It has also caused the hepatopancreas
tissue to encounter vacuolization, hyperplasia, and
necrosis. Meanwhile, treatment B triggered lamellar
fusion, loss of epithelia and necrosis as well as the
increased level of alteration (vacuolization, hyperplasia,
tubule regression, tubule & intertubular necrosis).
Moreover, gonad tissue went through hemocyte
infiltration caused by treatment A, followed the
hemocyte infiltration and necrosis after exposure to
treatment B (Figures 2 - 4). Koagouw & Ciocan (2019)
found different histological damage compared to every
group treatment, indicating a correlation between higher
concentrations of microplastics. The largest particles
and higher concentrations lead to severe effects (Bour
et al., 2018). Mussels living under pressures, such as
microplastic exposure, for a long time would run into
inflammatory responses and, later on, lower growth
and survival (Gu et al., 2020). Some studies indicated
that circulating and tissue-accumulated microplastics
induced an injury-type inflammatory response (Prokic
et al., 2019).

Microplastics enter the body of green mussels and
pass through various vital organs. First of all,
microplastics enter the gills by cilia movement. Pedersen
et al. (2020) explained that the pathway for microplastic
accumulation in Dreissena bugensis was likely mediated
through microvilli on gill surfaces. Furthermore, they
were creating passage into the gills via endocytosis.
This is an additional potential pathway via ciliary
movement, allowing transfer into the digestive tubules.
The gills of mussels can regulate the filtration and

sorting of particles based on their size, shape, nutritional
value, or chemical component on the surface of the
particle. Subsequently, the more nutritious particles are
transported to the mouth for ingestion (Xu et al., 2016).
Afterward, it could be defined that the gills become a
major protective organ toward the accumulation of
contaminants, and important organs for metabolic
processes of marine life (Zhu et al., 2020). Gills are
susceptible organs to chemicals exposure because they
have lamellae with a vast surface area that are easily
exposed to contaminants in seawater (Au, 2004). Direct
contact of the gill epithelium surface with pollutants in
the environment will decrease the number of
connections between filaments (Bråte et al., 2018).

The gills alterations of green mussels, such as
lamellar fusion due to microplastic exposure, were
characterized by attaching the two sides of the lamellae.
Lamellar fusion is likely caused by lamella hyperplasia
(Carvalho et al., 2020). This is also assumed to indicate
cell degeneration and eventually a sign of early necrosis
(Pribadi et al., 2017). Hyperplasia is characterized by
enlargement of the epithelium due to an increasing
number of cells that cause dilation on the lamellae;
therefore, lamellar fusions were occurred (Figure 2).
The histological changes included lamellar epithelium
distortion hyperplasia, and cellular connection formed
by the two neighbouring filaments, observed in green
mussels (sample from the environment) with sizes 6 –
7 cm collected from India (Vasanthi et al., 2021). These
alterations occurred in response to contaminants
exposure which could interfere with the filtering rate,
gas transportation, feeding of mussels (Hariharan et
al., 2021), ion regulation, and excretion of catabolic
products (Arrighetti et al., 2018).

The following process was the stretched epithelium
(the outermost layer of gill tissue). This process is
characterized by the incomplete cell structure. These
epithelium alterations were followed by necrosis in the
gill cilia attached to the epithelium (Figure 2). The ciliary
structure of the gills could damage by the presence of
plastic particles (Vasanthi et al., 2021). M. edulis with
a shell length of 4 – 6 cm exposed to 20 µg/L CdCl2
for eight days experienced alterations of the gills such
as epithelial necrosis and loss of cilia (Sheir et al.,
2013). M. galloprovincialis (4–5 cm shell length) gills
suffered thinning filament and decreased frontal and
lateral cilia due to exposure to 5 and 10 mg/L TiO2-
NPs for eight days (Gornati et al., 2016). The
destruction of the epithelial structure can affect the
regular activities of the gill, such as filtering rate, gas
transportation, and disrupted feeding (Hariharan et al.,
2021).

The microplastic particles passed through the gill
organs would be subsequently forwarded to the labial
palps that rejected the unwanted particles. Furthermore,
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they were disposed of in the form of pseudofaeces in
sediment through the exhalant channel into the mouth,
and then forwarded into the hepatopancreas. Since
microplastics contaminated the hepatopancreas,
vacuoles (vacuolization) appeared in the hepatopancreas
epithelium. They were characterized by the appearance
of irregular empty spaces (Figure 3). Forming of
vacuoles can indirectly affect the feeding behavior
(Hariharan et al., 2021), hence could inhibit the
absorption of ions needed by the body.

The subsequent alteration was hyperplasia in the
hepatopancreas epithelium, characterized by a wavy-
looking epithelium (Figure 3). This was occurred due
to an increasing number of cell epithelium. Hyperplasia
disturbs the digestive gland, metabolic, homeostatic
balance processes, and the immune system that causes
non-optimally detoxification processes (Rocha et al.,
2016). Disorders of the hepatopancreas inhibited
digestive and metabolic processes (Zupan & Kalafatic,
2003) that could finally interfere the green mussels’
fitness.

Tubular regression of hepatopancreas in green
mussels could be seen from the unclear lumen shape
and cell loss, which subsequently became necrosis

(Figure 3). Green mussels with sizes of 6–7 cm from
Indian water experienced disruption in the lumen, i.e.,
lumen dilation and atrophy with the formation of cellular
desquamate (Vasanthi et al., 2021). The destruction of
cells in the tubules indicated necrosis (Katalay et al.,
2016).

Intertubula plays a significant role in blood
circulation. Hence, necrosis could obstruct blood
circulation (Factor & Naar, 1985). Necrosis occurred
in the tubules, and the intertubular could be seen from
the irregular lumen structure; also the non-intact
intertubular (Figure 3). Necrosis was also observed in
intertubular tissue of M. galloprovincialis with sizes
of 3.5 – 5.5 cm collected from sites contaminated with
organic and inorganic toxicants along the coast
(Cuevas et al., 2015). Microplastics last longer in the
mollusc hepatopancreas (Woods et al., 2018)
reasonably to their role in phases I and II detoxification
(Arrighetti et al., 2018). Figure 3 shows the necrosis
of the hepatopancreas tissue. The microplastic
accumulation in the digestive gland has impaired mussel
activities with a consequent decrease in feeding
behavior and physiological changes (Vasanthi et al.,
2021). Microplastic accumulation followed by
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Figure 2. The gills tissue of green mussels (40x magnification). Lf: Lamellar fusion; hp: hyperplasia; Le: Loss of epithelia; n:
necrosis (left). Histological index (Ih) of green mussels gills based on microplastics exposure level (right).

Figure 3. The hepatopancreas tissue of green mussels (40x magnification): v: vacuolisation; hp: hyperplasia; tr: tubule regression,
n: necrosis (left). Histological index (Ih) of green mussels hepatopancreas based on the level of microplastics exposure (right).



alterations of the tissue structures may affect
biochemical pathways leading to failure of the digestive
gland function. As a final consequence, it would lead
to the death of the organism (Arrighetti et al., 2018).

The gonadal organs encountered hemocyte
infiltrations indicated by an increase in the number of
hemocytes (granular) in the tissue (Figure 4).
Hemocyte infiltration is a histopathological condition
frequently observed in animals after stress-inducing
exposure (Koagouw & Ciocan, 2019). This was found
in M. galloprovincialis (3.5-4.5 cm shell length)
exposed to polystyrene microplastics alone and mixed
with benzo[a]pyrene for 26 days (González-Soto et
al., 2019). Hemocyte infiltration was also observed in
the apple snail (Pomacea canaliculata) (± 3 cm shell
length) exposed to the insecticide Cypermethrin (10,
25, & 100 µg/L) for 14 days (Arrighetti et al., 2018)
and in eastern oysters (Crassostrea virginica) exposed
to graphene oxide (1 & 10 mg/L) for 72 h (Khan et al.,
2019). In addition, brown mussel P. perna (6 cm shell
length) exposed to toxic dinoflagellate (900 cells/ml)
for 96 h was also experienced hemocyte infiltration
(Neves et al., 2019).

 Hemocyte infiltration was categorized as a mild
level (Yee-Duarte et al., 2018) as a consequence of an
initial response to the body’s mechanism against the
foreign substance. Hemocyte infiltration indicated a
repairing process of damaged tissue (González-Soto
et al., 2019); accordingly, the the damaged tissue
showed an inflammatory response (Costa et al., 2013).
The increased number of hemocytes in the hemolymph
vessels and the invasion of hemocytes into cells were
signals of the defense mechanism in the body (David
et al., 2008).

This microplastic exposure also caused necrosis in
egg cells (Figure 4). Bråte et al. (2018) observed that
the gonad tissues underwent necrosis after exposure
to microplastics. Necrosis was caused by the cessation

of egg maturation (Blazer, 2002). Based on the
histopathological damage score, necrosis was
categorized as the level of severe damage (Yee-Duarte
et al., 2018). Necrosis in gonad tissue impaired the
fecundity and fertility of the organism (Galloway et
al., 2017). Gonadal tissue damage and gamete viability
were among the worst impacts of water pollution.
These damages led to the decrease of reproductive
success rate and the fitness of organisms (Vaschenko
et al., 2013). Galloway & Lewis (2016) explained that
ingestion of microplastics during gametogenesis
negatively impacts reproduction in oysters.

Green mussels exposed to pollutants experienced
tissue alteration that could inhibit their life system and
disturb the food chain. Farrell & Nelson (2013) found
microplastics in the hemolymph of crabs (Carcinus
maenas) , consuming mussels edulis exposed to
microplastics. Wright et al. (2013) also stated that
microplastics would be initiated into the food chain by
prey activity. Besides, microplastic exposed to oysters
during gametogenesis could have adverse effects and
would interfere with individual development in the
future (Sussarellu et al., 2016).

Conclusion

This study provides information on the effects of
microplastic exposure on tissue alterations of green
mussels. Our findings are important to conduct
ecological risk analysis and other ecotoxicological
studies. Information on green mussel histology could
compliment a more comprehensive status of quality.
The effects of microplastics on other mussel organs,
such as intestine and mantle need to be carried out in
further studies. Within the tested concentrations, the
higher the microplastic concentration exposed to the
green mussel, the higher the concentration of
microplastics in the body of the mussel. Microplastic
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Figure 4. The gonadal tissue of green mussels female (40x magnification). hi: hemocyte infiltration; n: necrosis (left). Histological
index (Ih) of green mussels gonad based on microplastics exposure level (right).



exposure led to tissue alteration in the gills,
hepatopancreas, and gonads. The severity level of
alteration was increased along with the increased of
microplastic exposure.
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