Karakteristik Fisikokimia dan Aktivitas Antioksidan Hidrolisat Protein Ikan Kakap (Lutjanus sp.) Skala Pilot

Tatty Yuniarti, Nafa Ya’la Arrahmi, Niken Dharmayanti, Sri Sugiwati, Mugi Mulyono, Taufik Hidayat, Pujoyuwono Martosuyono, Aghitia Maulani, Albar Alghany

Abstract


Hidrolisat protein ikan (HPI) merupakan produk dari reaksi hidrolisis ikatan peptida menghasilkan pelepasan peptida aktif pendek dan lebih mudah diserap. Ikan kakap merupakan komoditas perikanan laut yang berlimpah di Indonesia. Penelitian ini bertujuan untuk menentukan karakteristik fisikokimia dan kemampuan bioaktif HPI dari ikan kakap merah (Lutjanus sp.) pada skala pilot (biofermentor 120 kg). Pengujian bahan baku dan HPI yang dilakukan meliputi uji organoleptik, uji TVB, uji ALT, uji proksimat. pembuatan HPI dilakukan dengan menggunakan enzim alkalase 20.000 U/kg substrat saat suhu 55 °C dengan waktu hidrolisis pada jam ke-0 hingga jam ke-8. Pengujian derajat hidrolisis dan uji aktivitas antioksidan metode 2,2-difenil-1-pikrilhidrazil (DPPH) dilakukan pada tiap jam. Hasil penelitian menunjukkan waktu hidrolisis mulai stabil pada jam ke-6 hingga jam ke-8. Derajat hidrolisis (DH) HPI pada jam ke-6 adalah sebesar 13,3% dan inhibisi antioksidan sebesar 6,75%. Bahan baku HPI merupakan ikan segar dengan nilai TVB 12,89%; kadar protein 21,41%; lemak 4,66%; air 72,36%; dan abu 0,95%. Komposisi kimia HPI memiliki kadar protein 19,20%; lemak 0,15%; air 0.06%; abu 1,15%. Rendemen HPI yang dihasilkan sebesar 15,75% dari bahan baku. Total mikroba dan organoleptik memenuhi standar SNI. Kandungan asam amino tertinggi dari bahan baku dan HPI merupakan asam glutamat dengan nilai masing-masing 3,3% dan 3,4%. Kandungan asam amino terendah pada bahan baku dan HPI adalah histidin dengan nilai masing-masing 0,43% dan 0,52%. Produksi HPI skala pilot menghasilkan HPI yang kaya asam amino esensial dan memiliki aktivitas antioksidan, sehingga berpotensi digunakan sebagai ingridient pangan fungsional.
KATA KUNCI: 

Abstract


Fish protein hydrolysate (FPH) is a product of the hydrolysis reaction of peptide bonds resulting in the release of short active peptides and more easily absorbed. Fish protein hydrolyzate (HPI) is a product of the hydrolysis reaction of peptide bonds resulting in the release of short active peptides that are more easily absorbed. Snapper is an abundant marine fishery commodity in Indonesia. The aim of this study was to determine the physicochemical characteristics and bioactive capabilities of HPI from red snapper (Lutjanus sp.) on a pilot scale (120 kg biofermenter). Raw material and HPI testing includes organoleptic tests, TVB tests, ALT tests, proximate tests; HPI production uses the alcalase enzyme 20,000 U/kg substrate at a temperature of 55°C with a hydrolysis time of 0 to 8 hours. Tests for the degree of hydrolysis and antioxidant activity tests using the DPPH method are carried out every hour. The results showed that the hydrolysis time began to stabilize at the 6th to the 8th hour. The value of DH HPI at the 6th hour was 13.3% and antioxidant inhibition was 6.75%. The raw material is fresh fish with a TVB of 12.89%; protein content 21.41%; fat 4.66%; water 72.36%; ash 0.95%. The resulting HPI has a protein content of 19.20%; fat 0.15%; water 0.06%; ash 1.15%. HPI yield 15.75% of raw materials. Total microbes and organoleptics meet SNI standards. The highest amino acid content of raw materials and HPI is glutamic acid with values of 3.3% and 3.4% respectively. The lowest amino acid content in raw materials and HPI is histidine with values of 0.43% and 0.52% respectively. Pilot scale HPI production produces HPI which is rich in essential amino acids and has bioactive antioxidant capabilities, so it has the potential to be used as a functional food ingredient.


Keywords


HPI; alkalase; Lutjanus sp.,; derajat hidrolisis

References


Adhamatika, A., Brilliantina, A., Sari, E. K. N., Wijaya, R., Triardianto, D., & Sucipto, A. (2023). Analisis neraca massa dan energi pembuatan keripik kentang (Solanum tuberosum L). Jurnal Sains Dan Terapan, 2(1), 69–76.

Amiri, R., Safari, R., Bakhshandeh, T., & Ahmadi, V. F. (2016). Functional Properties of fish protein hydrolysates from cuttlefish (Sepia pharaonis) muscle produced by two commercial enzymes. Iranian Journal of Fisheries Sciences, 15(4), 1485–1499.

Annisa, S., Darmanto, Y. S., & Amalia, U. (2017). Pengaruh perbedaan spesies ikan terhadap hidrolisat protein ikan dengan penambahan enzim papain. Saintek Perikanan, 13(1), 24–30. https://doi.org/10.14710/ijfst.13.1.24-30

AOAC. (2005). Official Methods of Analysis of AOAC International. In Aoac (p. 3172).

Badan Standardisasi Nasional (BSN). (2006). Cara uji kimia-bagian 2: Penentuan kadar air pada produk perikanan (No. SNI-01-2354.2.2006).

Badan Standardisasi Nasional (BSN). (2014). SNI 4110-2014. Ikan Beku. Jakarta: BSN

Badan Standardisasi Nasional (BSN).(2013). SNI 2715-2013. Tepung Ikan Bahan Baku Pakan. Jakarta: BSN

Badan Standardisasi Nasional (BSN). (2008). SNI 2354.8.2008. Cara uji kimia-Bagian 8: Penentuan kadar Total Volatil Base Nitrogen (TVB-N). Jakarta: BSN.

Badan Standardisasi Nasional (BSN). (2013). SNI 01. 2729-2013. Ikan Segar. Spesifikasi. Jakarta: BSN

Badan Standardisasi Nasional (BSN).BSN. 2006. Cara Uji Kimia-Bagian 3: Penentuan Kadar Lemak Total pada Produk Perikanan. SNI-01-2354.3-2006.

Bayrakli, B., & Duyar, H. A. (2019). The Effect of raw material freshness on fish oil quality produced in fish meal & oil plant. Journal of Anatolian Environmental and Animal Sciences, 4(3), 473–479. https://doi.org/10.35229/jaes.636002

Bernadeta, Ardiningsih, P., & Silalahi, I. H. (2012). Penentuan kondisi optimum hidrolisat protein dari limbah ikan ekor kuning (Caesio cuning) Berdasarkan Karakteristik Organoleptik. Jurnal Kimia Khatulistiwa, 1(1), 26–30.

Calcinai, L., Bonomini, M. G., Leni, G., Faccini, A., Puxeddu, I., Giannini, D., Petrelli, F., Prandi, B., Sforza, S., & Tedeschi, T. (2022). Effectiveness of enzymatic hydrolysis for reducing the allergenic potential of legume by-products. Scientific Reports, 12(1), 1–9. https://doi.org/10.1038/s41598-022-21296-z

Dinakarkumar, Y., Krishnamoorthy, S., Margavelu, G., Ramakrishnan, G., & Chandran, M. (2022). Production and characterization of fish protein hydrolysate : effective utilization of trawl by-catch. Food Chemistry Advances, 1(1), 1–9. https://doi.org/10.1016/j.focha.2022.100138

Edison, Dewita, Karnila, R., & Yoswaty, D. (2020). The hydrolysis of fish protein from giant mudskipper (Periophthalmodon schlosseri) using alcalase enzyme. Nutrition and Food Science Journal, 8(3), 1056–1063. https://doi.org/10.12944/CRNFSJ.8.3.32

Elavarasan, K. (2019). Health benefits and potential applications of fish protein hydrolysate. ITEC Training Programme on ‘Protocols for the Production of High Value Secondary Products from Industrial Fish and Shellfish Processing,’ 65–78.

Elfidasari, D., Shabira, A. P., Sugoro, I., & Ismi, L. N. (2019). The nutrient content of Plecostomus (Pterygoplichthys pardalis) flesh from Ciliwung River Jakarta, Indonesia. Nusantara Bioscience, 11(1), 30–34. https://doi.org/10.13057/nusbiosci/n110106

Elvina, W., & Utami, R. T. (2022). Kajian potensi pemanfaatan limbah sisik ikan dari usaha ikan tangkap laut (studi kasus pasar kota Bengkulu). Manfish Journal, 2(3), 151–158. https://doi.org/10.31573/manfish.v2i3.468

Fattah, N., & Agussalim. (2019). Kualitas gel surimi dari limbah tetelan trimming ikan tuna (Thunnus sp) dan ikan kakap (Lates calcarifer) dengan penambahan tepung talas jepang. In Sustainability and Environmentally of Agricultural System for Safety, Healthy and Security Human Life (pp. 238–246).

Himonides, A. T., Taylor, A. K. D., & Morris, A. J. (2011). Enzymatic hydrolysis of fish frames using pilot plant scale systems. Food and Nutrition Sciences, 2(6), 586–593. https://doi.org/10.4236/fns.2011.26082

Iqbal, M., Suparmi, & Desmelati. (2019). Studi Pembuatan Hidrolisat Protein Ikan Lomek (Harpodon nehereus) dengan Menggunakan Enzim Papain. Jurnal Online Mahasiswa (JOM) Bidang Perikanan Dan Ilmu Kelautan, 6(2), 5–13.

Kandyliari, A., Mallouchos, A., Papandroulakis, N., Golla, J. P., Lam, T. K. T., Sakellari, A., Karavoltsos, S., Vasiliou, V., & Kapsokefalou, M. (2020). Nutrient composition and fatty acid and protein profiles of selected fish by-products. Foods, 9(2), 1–14. https://doi.org/10.3390/foods9020190

Khantaphant, S., Benjakul, S., & Kishimura, H. (2011). Antioxidative and ace inhibitory activities of protein hydrolysates from the muscle of brownstripe red snapper prepared using pyloric caeca and Commercial Proteases. Process Biochemistry, 46(1), 318–327. https://doi.org/10.1016/j.procbio.2010.09.005

Kumar, D., Chatli, M. K., Singh, R., Mehta, N., & Kumar, P. (2016). Enzymatic hydrolysis of camel milk casein and its antioxidant properties. Dairy Science and Technology, 96(3), 391–404. https://doi.org/10.1007/s13594-015-0275-9

Kurniawati, E., Ibrahim, B., & Desniar. (2019). Potency of Catfish (Clarias sp.) protein hydrolysates as candidates matrices for microbiology reference material. Squalen Bulletin of Marine and Fisheries Postharvest and Biotechnology, 14(3), 121–130.

Liang, X., Sun, J., Yang, H., Cheng, J., Shi, X., Yang, M., … Yue, X. (2021). Effects of enzymatic hydrolysis on the allergenicity of natural cow milk based on a BALB/c mouse model. Journal of Dairy Science, 104(12), 12353–12364. https://doi.org/10.3168/jds.2021-20260

Lowry, O., Rosebrough, N., Farr, A., & Randall, R. (1951). Protein measurement with the folin phenol reagent. J Biol Chem., 193(1), 265–275.

Martosuyono, P., Fawzya, Y. N., Patantis, G., & Sugiyono. (2019). Enzymatic production of fish protein hydrolysates in a pilot plant scale. Squalen Bulletin of Marine and Fisheries Postharvest and Biotechnology, 14(2), 85–92.

Molyneux, P. (2004). The Use of the stable free radical Diphenylpicryl-hydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin. Songklanakarin J. Sci. Technol., 26(2), 211–221.

Mutamimah, D., Ibrahim, B., & Trilaksani, W. (2018). Antioxidant activity of protein hydrolysate produced from tuna eye (Thunnus sp.) by Enzymatic Hydrolysis. Jurnal Pengolahan Hasil Perikanan Indonesia, 21(3), 522–531.

Noija, D., Martasuganda, S., Murdiyanto, B., & Taurusman, A. A. (2014). Pengelolaan sumberdaya ikan kakap merah (Lutjanus spp.) di Perairan Utara Cirebon, Laut Jawa. Jurnal Teknologi Perikanan Dan Kelautan, 5(1), 65–74. https://doi.org/10.24319/jtpk.5.65-74

Nurhayati, T.-, Salamah, E.-, Cholifah, - -, & Nugraha, R.-. (2014). Optimasi proses pembuatan hidrolisat jeroan ikan kakap putih. Jurnal Pengolahan Hasil Perikanan Indonesia, 17(1), 42–52. https://doi.org/10.17844/jphpi.v17i1.8136

Ovissipour, M., Benjakul, S., Safari, R., & Motamedzadegan, A. (2010). Fish protein hydrolysates production from yellowfin tuna Thunnus albacares head using alcalase and protamex. International Aquatic Research, 2(1), 87–95.

Ovissipour, M., Rasco, B., Shiroodi, S. G., Modanlow, M., Gholami, S., & Nemati, M. (2013). Antioxidant activity of protein hydrolysates from whole anchovy sprat (Clupeonella engrauliformis) prepared using endogenous enzymes and commercial proteases. Journal of the Science of Food and Agriculture, 93(7), 1718–1726. https://doi.org/10.1002/jsfa.5957

Pal, M., Ketema, A., Anberber, M., Mulu, S., & Dutta, Y. (2016). Microbial quality of fish and fish products. Microbial Quality of Fish and Fish Products, 43(2), 1-4.

Palla, F., Metusalach, & Amir, N. (2022). Protein hydrolyzate of grouper viscera : effects of crude bromelain extract concentration and hydrolysis time on yield and degree of hydrolysis. International Journal of Applied Biology, 6(2), 222–229.

Prastyo, D. T., Trilaksani, W., & Nurjanah. (2020). Aktivitas antioksidan hidrolisat kolagen kulit ikan nila (Oreochromis niloticus). Jurnal Pengolahan Hasil Perikanan Indonesia, 23(3), 423–433.

Prayudi, A., Yuniarti, T., Taryoto, A., Supenti, L., & Martosuyono, P. (2020a). C. (2020). Chemical and amino acid composition of snapper scrap meat hydrolysate. 13(4), 14.

Prayudi, A., Yuniarti, T., Taryoto, A., & Supenti, L. (2020). Chemical and amino acid composition of snapper scrap meat hydrolysate. AACL.Bioflux, 13(4), 2228–2241.

Priatni, S., Harimadi, K., Buana, E., Kosasih, W., & Rohmatussolihat, R. (2020). Production and characterization of spray-dried swamp eel (Monopterus albus) Protein hydrolysate prepared by Papain. Sains Malaysiana, 49(3), 545–552. https://doi.org/10.17576/jsm-2020-4903-09

Prihanto, A. A., Nurdiani, R., & Bagus, A. D. (2019). Production and characteristics of fi sh protein hydrolysate from parrot fi sh (Chlorurus sordidus ) head. PeerJ, 7, 1–16. https://doi.org/10.7717/peerj.8297

Romulo, A., & Audrey Aurellia, C. (2024). Effect of maltodextrin and egg white powder on physical characteristics of sorghum powdered drink. BIO Web of Conferences, 98. https://doi.org/10.1051/bioconf/20249806005

Rostini, I. (2013). Pemanfaatan daging limbah fillet ikan kakap merah sebagai bahan baku surimi untuk produk perikanan. Jurnal Akuatika, 4(2), 141–148. https://doi.org/10.1093/acref/9780192803511.013.0376

Salamah, E., Nurhayati, T., & Widadi, I. R. (2012). Pembuatan dan Karakteristik Hidrolisat Protein dari Ikan Lele Dumbo (Clarias gariepinus) Menggunakan Enzim Papain. Jurnal Pengolahan Hasil Perikanan Indonesia, 15(1), 9–16.

Schallreuter, K. U., Kothari, S., Chavan, B., & Spencer, J. D. (2008). Regulation of melanogenesis-controversies and new concepts. Experimental Dermatology, 17(5), 395–404. https://doi.org/10.1111/j.1600-0625.2007.00675.x

Shaviklo, A. R. (2015). Development of fish protein powder as an ingredient for food applications: a review. Journal of Food Science and Technology, 52(2), 648–661. https://doi.org/10.1007/s13197-013-1042-7

Steel, R. G. D., & Torrie, J. H. (1980). Principles and procedures of statistics a biometrical approach (2nd ed.). New York: McGraw-Hill Book Company: New York.

Tanukusumah, M., Kurniati, N., & Amelia, N. (2015). prevalensi alergi makanan pada anak usia kurang dari 3 tahun di Jakarta berbasis survei dalam jaringan/online. Sari Pediatri, 16(5), 365–374.

Thi, H., Thanh, T., & Van, N. (2018). Optimization of Protein Hydrolysis Conditions from Shrimp Head Meat (Litopenaeus vannamei) Using Commercial Alcalase and Flavourzyme Enzymes. Can Tho University, Journal of Science, 54(1), 16–25. https://doi.org/10.22144/ctu.jsi.2018.090

Wisuthiphaet, N., & Kongruang, S. (2015). Production of Fish protein hydrolysates by acid and enzymatic hydrolysis. Journal of Medical and Bioengineering, 4(6), 466–470. https://doi.org/10.12720/jomb.4.6.466-470

Witono, Y., Maryanto, M., Taruna, I., Masahid, A. D., & Cahyaningati, K. (2020). Aktivitas Antioksidan hidrolisat protein ikan wader (Rasbora jacobsoni) dari hidrolisis oleh enzim calotropin dan papain. Jurnal Agroteknologi, 14(1), 44–57. https://doi.org/10.19184/j-agt.v14i01.14817

Witono, Y., Taruna, I., Widrati, W. S., & Ratna, A. (2014). Hidrolisis ikan bernilai ekonomi rendah secara enzimatis menggunakan protease biduri. Jurnal Teknologi Dan Industri Pangan, 25(2), 140–145. https://doi.org/10.6066/jtip.2014.25.2.140

Wu, H. C., Chen, H. M., & Shiau, C. Y. (2003). Free amino acids and peptides as related to antioxidant properties in protein hydrolysates of mackerel (Scomber austriasicus). Food Research International, 36(1), 949–957. https://doi.org/10.1016/S0963-9969(03)00104-2

Wulandari, L., Nugraha, A. S., & Himmah, U. A. (2021). Penentuan aktivitas antioksidan dan antidiabetes ekstrak daun matoa (Pometia pinnata J.R. Forst. & G. Forst.) secara In Vitro. Jurnal Kefarmasian Indonesia, 11(2), 132–141. https://doi.org/10.22435/jki.v11i2.3196

Yarnpakdee, S., Benjakul, S., & Kristinsson, H. G. (2012). Effect of pretreatments on chemical compositions of mince from Nile tilapia (Oreochromis niloticus) and fishy odor development in protein hydrolysate. International Aquatic Research, 4(1). https://doi.org/10.1186/2008-6970-4-7

Yuniarti, T., Prayudi, A., Supenti, L., Suhrawardan, H., & Martosuyono, P. (2021). The Hydrolysis protein profile of the by-product of the Fresh Shrimp Processing Industry. Jurnal Perikanan Universitas Gadjah Mada, 23(1), 63. https://doi.org/10.22146/jfs.59906

Zhidong, L., Benheng, G., Xuezhong, C., Zhenmin, L., Yun, D., Hongliang, H., & Wen, R. (2012). Optimisation of hydrolysis conditions for antioxidant hydrolysate production from whey protein isolates using response surface methodology. Irish Journal of Agricultural and Food Research, 52(1), 53–65.




DOI: http://dx.doi.org/10.15578/jpbkp.v19i1.985

Article Metrics

Abstract view : 17 times
PDF (Bahasa Indonesia) - 7 times

Refbacks

  • There are currently no refbacks.


JPBKP adalah Jurnal Ilmiah yang terindeks :


Creative Commons License

ISSN : 1907-9133(print), ISSN : 2406-9264(online)
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.