Cloning of Partial β-Mannanase Gene from Indonesia Marine Bacteria Bacillus Subtilis LBF-005
Abstract
The strain LBF-005 from marine bacteria have already isolated and screened for mannanase degrading enzyme in submerged fermentation process. This strain was further identified by using 16S rRNA showed that bacterium is belong to Bacillus subtilis that could produce mannanase with activity around 9.5 U/mL. The optimum pH and temperature for the activity of crude enzyme for mannanase was 6.0 and 50 oC. Cloning of mannanase gene from B. subtilis was conducted using six primers set designed based on the homology analysis conserve region several mannanase from bacteria (Bacillus sp.) glycosyl hydrolase (GH) family 26. Optimization of PCR conditions was performed by gradient PCR to obtained PCR product of b-mannanase gene. The PCR product was obtained by third primer combination and was estimated to be around 972-bp. Analysis of the nucleotide sequence showed that sequences has similarity with mananase gene from other Bacillus sp., such as the B. subtilis strain WLY-12, B. subtilis strain WL-8, B. subtilis strain CICC 10260, B.subtilis strain CD-25, B.subtilis strain G1, and Bacillus sp. SWU60 were about 98%, 98%, 98%, 98%, 97% and 95%, respectively. The next research will to obtain a whole gene encoding β-mannanase by using in vitro cloning method, characterization of recombinant mannanase and application this enzyme for mannooligosaccharides production.
Keywords
Full Text:
PDFReferences
Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D.J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research. 25, 3389-3402. doi:10.1093/nar/25.17.3389
Benech, R.O., Xiaoming Li, Patton, D., Powlowski, J., Storms, R., Bourbonnais, R., Paice, M., and Tsang, A. (2007). Recombinant expression, characterization, and pulp prebleaching property of a Phanerochaete chrysosporium endo-β-1,4-mannanase. Enzyme and Microbial Technology, 41, 740–747.
doi:10.1016/j.enzmictec.2007.06.012
Blibech, M., Chaari, F., Bhiri, F., Dammak, I., Ghorbel, R.E., and Chaabouni, S.E. (2011). Production of manno-oligosaccharides from locust bean gum using immobilized Penicillium occitanis mannanase. Journal of Molecular Catalysis B: Enzymatic, 73, 111– 115. doi:10.1016/j.molcatb.2011.08.007
Chauhan, P.S., Puri, N., Sharma, P., and Gupta, N. (2012). Mannanases: microbial sources, production, properties and potential biotechnological applications. Applied Microbiology and Biotechnology, 93, 1817–1830. doi:10.1007/s00253-012-3887-5
Dhawan S. and Kaur J. (2007). Microbial mannanases: an overview of production and applications. Critical Reviews in Biotechnology, 27, 197–216. doi:10.1080/07388550701775919
Guo, B., Li P.Y., Yue Y.S., Zhao H.L., Song S.D., Sun, C.Y., Zhang, W.X., Chen, X.L., Zhang, X.Y., Zhou, B.C., and Zhang, Y.Z. (2013). Gene Cloning, Expression and Characterization of a Novel Xylanase from the Marine Bacterium, Glaciecola mesophila KMM241. Marine Drugs, 11, 1173-1187. doi:10.3390/md11041173
Hall, B.G. (2013). Building phylogenetic trees from molecular data with MEGA. Molecular Biology and Evolution, 1-7. doi:10.1093/molbev/mst012
Henrissat, B. (1991). A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochemical Journal, 280, 309-316. doi:10.1042/bj2800309
Jian, H.L., Zhu L.W., Zhang W.M., Sun D.F., and Jiang J.X. (2013). Enzymatic production and characterization of manno-oligosaccharides from Gleditsiasinensis galactomannan gum. International Journal of Biological Macromolecules, 55, 282– 288. http://dx.doi. org/10.1016/j.ijbiomac.2013.01.025
Lee, J.T., Bailey C.A., and Cartwright A.L. (2003). Beta mannanase ameliorates viscosity-associated depression of growth in broiler chickens fed guar germ and hull fractions. Poultry Science, 82, 1925-1931. doi:10.1093/ps/82.12.1925
Liepman, A.H., Nairn, C.J., Willats, W.G.T., Sørensen, I., Roberts, A.W., and Keegstra, K. 2007. Functional genomic analysis supports conservationof function among cellulose synthase-like A gene familymembers and suggest diverse roles of mannans in plants. Plant Physiology, 143, 1881–1893. http://dx.doi.org/10.1104/pp.106.093989
Liu, H.X., Gong, J.S., Li, H., Lu, Z.M., Li, H., Qian, J.Y., Xu, Z.H., and Shi, J.S.. (2015). Biochemical characterization and cloning of an endo-1,4- β-mannanase from Bacillus subtilis YH12 with unusually broad substrate profile. Process Biochemistry, 50, 712–721. http://dx.doi.org/10.1016/j.procbio.2015.02.011
Ma, Y., Xue, Y., Dou, Y., Xu, Z., Tao, W., and Zhou, P. (2004). Characterization and gene cloning of a novel β-mannanase from alkaliphilic Bacillus sp. N16-5. Extremophiles, 8, 447–454. doi:10.1007/s00792-004-0405-4.
Mendoza, N.S., Arai, M., Kawaguchi, T., Yoshida, T., and Joson, L.M. (1994). Purification and properties of mannanase from Bacillus subtilis. World Journal of Microbiology and Biotechnology, 10, 551–555. doi:10.1007/BF00367665
Moreira, L.R. and Filho. E.X. (2008). An overview of mannan structure and mannan degrading enzyme systems. Applied Microbiology and Biotechnology. 79, 165-178. doi:10.1007/s00253-008-1423-4
Politz, O., Krah, M.K., Thomsen, K., and Borriss. R. (2000). A highly thermostableendo-(1,4)-b-mannanase from the marine bacterium Rhodothermusmarinus. AppliedMicrobiology andBiotechnology, 53, 715-721. doi:10.1007/s002530000351
Schroder, R., Atkinson, R.G., Redgwell, R.J. (2009). Re-interpreting the role of endo-β-mannanases as mannanendotransglycosylase/hydrolases in the plant cell wall. Annals of Botany, 104, 197–204. doi:10.1093/aob/mcp120
Sievers, F., Andreas, W., David, D., Toby, J.G., Kevin, K., Weizhong, L., Rodrigo, L., Hamish, M., Michael, R., Johannes, S., Julie, D.T. and Desmond, G.H. (2011). Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Molecular Systems Biology, 7, 1-6.doi:10.1038/msb.2011.75
Summpunn, P., Chaijan, S., Isarangkul, D., Wiyakrutta, S., and Meevootisom, V. (2011). Characterization, gene cloning, andheterologous expression ofβ-mannanase from a thermophilic Bacillus subtilis. The Journal of Microbiology, 49, 86-93. doi: 10.1007/s12275-011-0357-1
Tamaru, Y., Araki, T., Morishita, T., Kimura, T., Sakka, K., and Ohmiya. K. (1997). Cloning, DNA sequencing, and expression of the P-1,4-mannanase gene from a marine bacterium, Vibrio sp. strain MA-138. Journal of Fermentation and Bioengering, 83, 201-205.doi: 10.1016/S0922-338X(97)83584-2
Wang, M., You, S., Zhang, S., Qi, W., Liu, Z., Wu, W., Su, R., and He, Z. (2013). Purification, characterization, and production of b-mannanase from Bacillus subtilis TJ-102 and its application in gluco-mannooligosaccharides preparation. European Food Research and Technology, 237, 399–408. doi:10.1007/s00217-013-2002-1
Zou, X.T., Qiao, X.J., and Xu, Z.R., (2006). Effect of β-mannanase (hemicell) on growth performance and immunity of broilers. Poultry Science, 85, 2176–2179. doi:10.1093/ps/85.12.
DOI: https://doi.org/10.15578/squalen.252
Article Metrics
Abstract View: 387,PDF Download: 298
Refbacks
- There are currently no refbacks.
ISSN : 2089-5690(print), E-ISSN : 2406-9272(online)
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.