Effect of Hydrolyzed Fucoidan from The Brown Seaweed Sargassum Binderi Sonder Towards Human Breast Cancer T47d Cell Lines

Ellya Sinurat, Endang Saepudin, Fildzah Alfita Qosthalani

Abstract


Fucoidan, a sulfated heteropolysaccharide, consists of L-fucose and sulfate ester groups as the main component. Over the past three decades, fucoidan structures and bioactivities have been widely studied. The chemical components (fucose, galactose, small monosaccharides and also the sulfate) and the molecular weights of fucoidans from different brown seaweed species produce different characteristics and structures of fucoidan. The activity of fucoidan against cancer cells has been reported to be affected strongly by their sulfate content and molecular weight. Low-molecular-weight fucoidans tend to have higher solubility and easily penetrate into cancer cells. The objective of this study was to investigate the effect of hydrolyzed of fucoidan on its anti cancer activity againts the breast cancer T47D cells. In this study, the fucoidan from the brown seaweed Sargassum binderi Sonder was extracted using 0.1 N HCl and was depolymerized by acid hydrolysis at various times and concentrations. Result showed that fucoidan hydrolyzed with 1 M trifluoroacetic acid (TFA) for 1.5 hours reached the maximum depolymerization process and resulted in the decrement of molecular weight from 785.12 kDa to 5.79 kDa as well as sulfate content from 18.63% to 8.69%. The IC50 values of  fucoidan and low molecular weight fucoidan against the breast cancer T47D cells were 60.03 mg/mL and 182.34 mg/ respectively. This result indicated that the sulfate content of fucoidan probably affected its anticancer bioactivities. 


Keywords


fucoidan, hydrolysis, brown seaweed, sulfate, anticancer

Full Text:

PDF

References


Ahmadi, A., Zorofchian Moghadamtousi, S., Abubakar, S., & Zandi, K. (2015). Antiviral potential of algae polysaccharides isolated from marine sources: A review. BioMed Research International, 2015. http://doi.org/10.1155/2015/825203

Atashrazm, F., Lowenthal, R. M., Woods, G. M., Holloway, A. F., & Dickinson, J. L. (2015). Fucoidan and cancer: A multifunctional molecule with anti-tumor potential. Marine Drugs, 13(4), 2327–2346. http://doi.org/10.3390/md13042327

C. Oliveira, A. S. F., R. Novoa-Carballal, C. N., I. Pashkuleva, N. M. Neves, M. A. C., & R. L. Reis, A. Martins, T. H. S. (2017). The Key Role of Sulfation and Branching on Fucoidan Antitumor Activity. Macromolecular Bioscience, (December). http://doi.org/10.1002/mabi.201600340

Chaidir, A. (2006). Kajian Rumput Laut Sebagai Sumber Serat Alternatif Untuk Minuman Berserat. Institut Pertanian Bogor.

Chevolot, L., Foucault, A., Chaubet, F., Kervarec, N., Sinquin, C., Fisher, A. M., & Boisson-Vidal, C. (1999). Further data on the structure of brown seaweed fucans: Relationships with anticoagulant activity. Carbohydrate Research, 319(1–4), 154–165. http://doi.org/10.1016/S0008-6215(99)00127-5

Chevolot, L., Mulloy, B., Ratiskol, J., Foucault, A., & Colliec-Jouault, S. (2001). A disaccharide repeat unit is the major structure in fucoidans from two species of brown algae. Carbohydrate Research, 330(4), 529–535. http://doi.org/10.1016/S0008-6215(00)00314-1

Choi, J. Il, & Kim, H. J. (2013). Preparation of low molecular weight fucoidan by gamma-irradiation and its anticancer activity. Carbohydrate Polymers, 97(2), 358–362. http://doi.org/10.1016/j.carbpol.2013.05.002

Conchie, J., & Percival, E. G. V. (1950). fucoidin. Part II. The Hydrolysis of a Methyluted Puwidin prepared from Fucus vesiculosus. J. Chem. Soc., 827–832.

Cui, S. W. (2015). Understanding Carbohydrate Analysis. http://doi.org/10.1201/9780203485286.ch2

Cumashi, A., Ushakova, N. A., Preobrazhenskaya, M. E., D’Incecco, A., Piccoli, A., Totani, L., … Nifantiev, N. E. (2007). A comparative study of the anti-inflammatory, anticoagulant, antiangiogenic, and antiadhesive activities of nine different fucoidans from brown seaweeds. Glycobiology, 17(5), 541–552. http://doi.org/10.1093/glycob/cwm014

Dumitriu, S. (1996). Polysaccharides in Medicinal Applications. Taylor & Francis. Retrieved from https://books.google.co.id/books?id=bERzs5eztYMC

Fitton, J. H. (2006). Fucoidans: Healthful Saccharides from the Sea. GlycoScience: The Nutrition Science Site, 1–6.

Haroun-Bouhedja, F., Ellouali, M., Sinquin, C., & Boisson-Vidal, C. (2000). Relationship between sulfate groups and biological activities of fucans. Thrombosis Research, 100(5), 453–459. http://doi.org/10.1016/S0049-3848(00)00338-8

Hasanah, I. (2014). Studi Komparasi Kandungan Karbohidrat Tepung Biji Mangga Manalagi dan Arumanis sebagai Alternatif Sumber Karbohidrat pada Pembuatan Jenang Pelok. Institut Agama Islam Negeri Walisongo. Retrieved from http://eprints.walisongo.ac.id/3907/

Hayes, M. (2012). Marine Bioactive Compounds. (M. Hayes, Ed.). Springer New York Dordrecht Heidelberg London. http://doi.org/10.1007/978-1-4614-1247-2

Hussain, E., Wang, L., Jiang, B., Riaz, S., Butt, Y., & Shi, D. (2016). A review of the components of brown seaweeds as potential candidates in cancer therapy. RSC Advances, 6, 12592–12610. http://doi.org/10.1039/C5RA23995H

Ikeguchi, M., Yamamoto, M., Arai, Y., Maeta, Y., Ashida, K., Katano, K., … Kimura, T. (2011). Fucoidan reduces the toxicities of chemotherapy for patients with unresectable advanced or recurrent colorectal cancer. Oncology Letters, 2(2), 319–322. http://doi.org/10.3892/ol.2011.254

Kim, S.-K. (2011). Handbook of Marine Macroalgae: Biotechnology and Applied Phycology. Wiley. Retrieved from https://books.google.co.id/books?id=uHAiKQEACAAJ

Kim, S. K. (2015). Springer Handbook of Marine Biotechnology. Springer Berlin Heidelberg. Retrieved from https://books.google.co.id/books?id=Z-tVBgAAQBAJ

Li, B., Lu, F., Wei, X., & Zhao, R. (2008). Fucoidan: Structure and bioactivity. Molecules, 13(8), 1671–1695. http://doi.org/10.3390/molecules13081671

Lim, S., Choi, J., & Park, H. (2015). Antioxidant activities of fucoidan degraded by gamma irradiation and acidic hydrolysis. Radiation Physics and Chemistry, 109, 23–26. http://doi.org/10.1016/j.radphyschem.2014.12.008

Mccauley, J., Zivanovic, A., & Skropeta, D. (2013). Bioassays for anticancer activities.

Nielsen, S. S. (2010). Food Analysis Laboratory Manual. Evaluation, 9–16. http://doi.org/10.1007/978-1-4419-1463-7

Nishino, T., Nagumo, T., Kiyohara, H., & Yamada, H. (1991). Structural characterization of a new anticoagulant fucan sulfate from the brown seaweed Ecklonia kurome. Carbohydrate Research, 211(1), 77–90. http://doi.org/10.1016/0008-6215(91)84147-7

Park, J., Yeom, M., & Hahm, D. H. (2016). Fucoidan improves serum lipid levels and atherosclerosis through hepatic SREBP-2-mediated regulation. Journal of Pharmacological Sciences, 131(2), 84–92. http://doi.org/10.1016/j.jphs.2016.03.007

Patankar, M. S., Oehninger, S., Barnett, T., Williams, R. L., & Clark, G. F. (1993). A revised structure for fucoidan may explain some of its biological activities. Journal of Biological Chemistry, 268(29), 21770–21776.

Plant Science 4 U. (2014). Characteristics of Phaeophyceae (Brown Algae). Retrieved June 9, 2017, from http://www.plantscience4u.com/2014/04/characteristics-of-phaeophyceae-brown.html#.WTn6gOuGPIV

Pomin, V. H., Valente, A. P., Pereira, M. S., & Mourão, P. A. S. (2005). Mild acid hydrolysis of sulfated fucans: A selective 2-desulfation reaction and an alternative approach for preparing tailored sulfated oligosaccharides. Glycobiology, 15(12), 1376–1385. http://doi.org/10.1093/glycob/cwj030

Ponce, N. M., Pujol, C. A., Damonte, E. B., Flores, M. L., & Stortz, C. A. (2003). Fucoidans from the brown seaweed Adenocystis utricularis: Extraction methods, antiviral activity and structural studies. Carbohydrate Research, 338, 153–165.

Prasetyo, D. P. B. (2014). Laporan Resmi Praktikum Biokimia : Analisis Kadar Air Dan Abu.

Putri, K. H. (2011). Pemanfaatan Rumput Laut Coklat (Sargassum sp.) Sebagai Serbuk Minuman Pelangsing Tubuh, 1–99.

Ramdhan, M., & Arifin, T. (2013). Aplikasi Sistem Informasi Geografis Dalam Penilaian Proporsi Luas Laut Indonesia ( Application of Geographic Information System for Assessment of Indonesia Marine Proportion ). Pusat Penelitian Dan Pengembangan Sumberdaya Laut Dan Pesisir, KKP, (6), 141–146.

Rioux, L. E., Turgeon, S. L., & Beaulieu, M. (2007). Characterization of polysaccharides extracted from brown seaweeds. Carbohydrate Polymers 69,530–537.

Saravana, P. S., Cho, Y.-J., Park, Y.-B., Woo, H.-C., & Chun, B.-S. (2016). Structural, antioxidant, and emulsifying activities of fucoidan from Saccharina japonica using pressurized liquid extraction. Carbohydrate Polymers, 153, 518–525. http://doi.org/10.1016/j.carbpol.2016.08.014

Schneider, T., Ehrig, K., Liewert, I., & Alban, S. (2015). Interference with the CXCL12/CXCR4 axis as potential antitumor strategy: Superiority of a sulfated galactofucan from the brown alga Saccharina latissima and Fucoidan over heparins. Glycobiology, 25(8), 818–824. http://doi.org/10.1093/glycob/cwv022

Shevchenko, N. M., Anastyuk, S. D., Menshova, R. V., Vishchuk, O. S., Isakov, V. I., Zadorozhny, P. A., … Zvyagintseva, T. N. (2015). Further studies on structure of fucoidan from brown alga Saccharina gurjanovae. Carbohydrate Polymers, 121, 207–216. http://doi.org/10.1016/j.carbpol.2014.12.042

Shimizu, J., Wada-Funada, U., Mano, H., Matahira, Y., Kawaguchi, M., & Wada, M. (2005). Proportion of Murine Cytotoxic T Cells is Increased by High Molecular-Weight Fucoidan Extracted from Okinawa mozuku (Cladosiphon okamuranus). Journal of Health Science, 51(3), 394–397. http://doi.org/10.1248/jhs.51.394

Sinurat, E. (2011). Isolasi Dan Karakterisasi Serta Uji Aktivitas Fukoidan Sebagai Anti Koagulan Dari Rumput Laut Coklat (Sargassum crassifolium). Universitas Indonesia.

Skriptsova, A. V., Shevchenko, N. M., Zvyagintseva, T. N., & Imbs, T. I. (2010). Monthly changes in the content and monosaccharide composition of fucoidan from Undaria pinnatifida (Laminariales, Phaeophyta). Journal of Applied Phycology, 22(1), 79–86. http://doi.org/10.1007/s10811-009-9438-5

Ustyuzhanina, N. E., Bilan, M. I., Ushakova, N. A., Usov, A. I., Kiselevskiy, M. V., & Nifantiev, N. E. (2014). Fucoidans: Pro- or antiangiogenic agents? Glycobiology, 24(12), 1265–1274. http://doi.org/10.1093/glycob/cwu063

Usui, T., Asari, K., & Mizuno, T. (1980). Isolation of Highly Purified “Fucoidan” from Eisenia bicyclis and Its Anticoagulant and Antitumor Activities. Agricultural and Biological Chemistry, 44(8), 1965–1966. http://doi.org/10.1080/00021369.1980.10864249

Venkatesan, J., Anil, S., & Kim, S. K. (2017). Seaweed Polysaccharides: Isolation, Biological and Biomedical Applications. Elsevier Science. Retrieved from https://books.google.co.id/books?id=BZ2pDQAAQBAJ

Vishchuk, O. S., Ermakova, S. P., & Zvyagintseva, T. N. (2013). The fucoidans from brown algae of Far-Eastern seas: Anti-tumor activity and structure-function relationship. Food Chemistry, 141(2), 1211–1217. http://doi.org/10.1016/j.foodchem.2013.03.065

Wu, L., Sun, J., Su, X., Yu, Q., Yu, Q., & Zhang, P. (2016). A review about the development of fucoidan in antitumor activity: Progress and challenges. Carbohydrate Polymers, 154, 96–111. http://doi.org/10.1016/j.carbpol.2016.08.005

Xu, H., Wang, J., Chang, Y., Xu, J., Wang, Y., & Long, T. (2014). Function Fucoidan from the sea cucumber Acaudina molpadioides exhibits anti-adipogenic activity by modulating the Wnt / b -catenin pathway and down- regulating the SREBP-1c expression, 1547–1555. http://doi.org/10.1039/c3fo60716j

Yang, B., Yu, G., Zhao, X., Jiao, G., Ren, S., & Chai, W. (2009). Mechanism of mild acid hydrolysis of galactan polysaccharides with highly ordered disaccharide repeats leading to a complete series of exclusively odd-numbered oligosaccharides. FEBS Journal, 276(7), 2125–2137. http://doi.org/10.1111/j.1742-4658.2009.06947.x

Yang, C., Chung, D., Shin, I. S., Lee, H., Kim, J., Lee, Y., & You, S. (2008). Effects of molecular weight and hydrolysis conditions on anticancer activity of fucoidans from sporophyll of Undaria pinnatifida. International Journal of Biological Macromolecules, 43(5), 433–437. http://doi.org/10.1016/j.ijbiomac.2008.08.006

Yang, L., Wang, P., Wang, H., Li, Q., Teng, H., Liu, Z., … Zou, X. (2013). Fucoidan derived from Undaria pinnatifida induces apoptosis in human hepatocellular carcinoma SMMC-7721 cells via the ROS-mediated mitochondrial pathway. Marine Drugs, 11(6), 1961–1976. http://doi.org/10.3390/md11061961

You, S., Yang, C., Lee, H., & Lee, B. Y. (2010). Molecular characteristics of partially hydrolyzed fucoidans from sporophyll of Undaria Pinnatifida and their in vitro anticancer activity. Food Chemistry, 119(2), 554–559. http://doi.org/10.1016/j.foodchem.2009.06.054

Zhuang, C., Itoh, H., Mizuno, T., & Ito, H. (1995). Antitumor Active Fucoidan from the Brown Seaweed, Umitoranoo ( Sargassum thunbergii ). Bioscience, Biotechnology and Biochemistry, 59(4), 563–567. http://doi.org/10.1271/bbb.59.563.

Zvyagintseva, T. N., Shevchenko, N. M., & Popovnich, I. B. (1999). A new procedure for the separation of water-soluble polysaccharides from brown seaweeds. Carbohydrate Research, 322, 32–39.




DOI: https://doi.org/10.15578/squalen.275
         

Article Metrics

Abstract View: 732,
PDF Download: 403
             

Refbacks

  • There are currently no refbacks.



Creative Commons License

ISSN : 2089-5690(print), E-ISSN : 2406-9272(online)
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.