Influence of Salinity on The Growth and Fatty Acids Production of Euglena sp. Local Strain from Dieng Plateau, Indonesia

Ria Amelia, Arief Budiman, Andhika Puspito Nugroho, Dr. Eko Agus Suyono

Abstract


High salinity is a challenging environmental stressor for organisms to adapt to. In this work, the effects of added NaCl and KCl at various concentrations (0, 100 mM, and 200 mM) for 13 days in the growth medium were investigated in relation to the physiological, morphological, and proximate content of Euglena sp. Utilizing gas chromatography (GC), the amount of fatty acid methyl esters (FAMEs) was determined. Euglena sp. exhibited an obvious decline in growth rate and photosynthetic pigment with increasing salinity. Biomass, protein, carbohydrates had the highest quantities in KCl 100 mM medium, measuring 0.586 ± 0.096 mg/mL, 0.050 ± 0.00017 mg/mL, and 968.091 ± 81.197 mg/mL, respectively. The treatment with 200 mM NaCl had the highest lipid content, with a lipid concentration of 0.42 ± 0.060 mg/mL. After being cultivated in NaCl and KCl at a 200 mM concentration, respectively, the amount of polyunsaturated fatty acids (PUFAs) declined and the amount of saturated fatty acids (SFAs) increased in Euglena sp. The percentage of PUFAs, such as methyl linoleate and methyl linolenate, did not surpass the European B100 biodiesel standard limit of 12% (weight), despite the wide variety of PUFAs. It showed that the use of NaCl and KCl during salt stress significantly increases Euglena sp. biofuel production. For this reason, cultivating Euglena sp. at high salinity is suitable for producing biofuels.

Keywords


salinity, Euglena sp., growth rate, fatty acids, biofuel

Full Text:

PDF


DOI: https://doi.org/10.15578/squalen.812
         

Article Metrics

Abstract View: 419,
PDF Download: 262
             

Data citation

References Affenzeller, M. J., Dareshouri., Andosch, A., Lutz, C., & Meindi, U, L. (2009). Salt stress-induced cell death in the unicellular green alga Micrasterias denticulata. Journal of Experimental Botany, 60 (3), 939-954. http://dx.doi.org/10.1093/jxb/ern348 Asulabh, K.S., Supriya, G., & Ramachandra, T.V. (2012). Effect of salinity concentrations on growth rate and lipid concentration in Microcystis sp., Chlorococcum sp., and Chaetoceros sp. Lake, 1-7. http://ces.iisc.ernet.in/energy. Azizullah, A., Richter, P., & Häder, D.P. (2012). Responses of morphological, physiological, and biochemical parameters in Euglena gracilis to 7-days exposure to two commonly used fertilizers dap and urea. Journal of Applied Phycology, 24, 21–33. http://dx.doi.org/10.1007/s10811-010-9641-4 Barabás, I., & Todoruţ, I.A. (2011). Biodiesel quality, standards and properties. In: Montero, G., Stoytcheva, M. (Eds.), Biodiesel-Quality, Emissions and By Products. InTech, Rijeka, pp 3–28. Bligh, E.G & Dyer, W.J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37, 911-917. doi: 10.1139/o59-099. Borowitzka, L.J., Moulton, T.P., & Borowitzka, M.A. (1984b). The mass culture of Dunaliella salina for fine chemicals: From laboratory to pilot plant. In Proceedings of the International Seaweed Symposium; Springer: Dordrecht, The Netherlands, pp 115–212. Borowitzka, M.A. (2018a). Biology of Microalgae. In: Levine IA, Fleurence J (eds) Microalgae in health and disease prevention. Academic Press, London, pp 23–72. Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analitical Biochemistry, 72, 248-254. https://doi.org/10.1006/abio.1976.9999. Calvayrac, R., Laval-Martin, D., Briand, J., & Farineau, J. (1981). Paramylon synthesis by Euglena gracilis photoheterotrophically grown under low O2 pressure. Planta, 153, 6–13. https://doi.org/10.1007/BF00385311. Chruch, J., Hwang, J.H., Kim, K.T., McLean, R., Oh, Y.K., Nam, B., Joo, J.C., & Lee, W.H. (2017). Effect of salt type and concentration on the growth and lipid content of Chlorella vulgaris in synthetic saline wastewater for biofuel production. Bioresource Technology, 243, 147-153. http://dx.doi.org/10.1016/j.biortech.2017.06.081. Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analitical Chemistry, 28, 350–356. https://doi.org/10.1021/ac60111a017 Duong, V.T., Li,Y., Nowak, E., & Schenk, P.M. (2012). Microalgae isolation and selection for prospective biodiesel production. Energies, 3, 1835–1849. https://doi.org/10.3390/en5061835. El-Katony, T.M., & El-Adl, M.F. (2020). Salt response of the freshwater microalga Scenedesmus obliquus (Turp.) kutz is modulated by the algal growth phase. Journal of Oceanology and Limnology, 38, 802–815. https://doi.org/10.1007/s00343-019-9067-z. Elloumi, W., Jebali, A., Maalej, A., Chamkha, M., & Sayadi, S. (2020). Effect of mild salinity stress on the growth, fatty acid and carotenoid compositions, and biological activities of the thermal freshwater microalgae Scenedesmus sp. Biomolecules, 10.1515, 1-17. https://doi.org/10.3390/biom10111515. El-Sayed, A. (2004a). Circulation of Quaron Lake wastes. II-Growth of Scenedesmus sp. under Mg residences. Egyptian Journal of Biotechnology, 17, 477–485. http://www.americanscience.org/. El-Sayed, A. (2004b). Screening and growth characterization of the green life stock of drill water from Jeddah, Saudi Arabia. I-Isolation and growth characterization of Scenedesmus sp. N. Egyptian Journal of Microbiology, 8, 376–385.https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwiazc2U_6j_AhXUumMGHRFdDkUQFnoECAgQAQ&url=https%3A%2F%2Fegyjs.journals.ekb.eg%2Farticle_114563_03b4dc21935566d7acf051828150e391.pdf&usg=AOvVaw0ByHegDOdlVwZV0q54w91Q. Erdmann, N., & Hagemann, M. (2001). Salt acclimation of algae and cyanobacteria: A comparison. In Algal Adaptation to Environmental Stresses; Rai, L.C., Gaur, J.P., Eds.; Springer: Berlin, Germany, pp 323–361. Erfianti, T., Maghfiroh, K.Q., Amelia, R., Kurnianto, D., Sadewo, B. R., Marno, S., Devi, I., Dewayanto, N., Budiman, A., Suyono, E. A. (2023). Nitrogen sources affect the growth of local strain Euglena sp. isolated from Dieng peatland, Central Java, Indonesia, and their potential as bio-avtur. IOP Conference Series: Earth Environmental Science. doi:10.1088/1755-1315/1151/1/012059. Fal, S., Aasfar, A., Rabie, R., Smouni, A., Arroussi, H.EL. (2022). Salt induced oxidative stress alters physiological, biochemical and metabolomic responses of green microalga Chlamidomonas reinhardtii. Heliyon, 8, 1-11. https://doi.org/10.1016/j.heliyon.2022.e08811. Frank, I.B & Dubinsky, Z. (1999). Balanced growth in aquatic plants: myth or reality?: : Phytoplankton use the imbalance between carbon assimilation and biomass production to their strategic advantage. Bioscience, 49 (1), 29–37. http://dx.doi.org/10.1525/bisi.1999.49.1.29. Gissibl, A., Sun, A., Care, A., Nevalainen, H., & Sunna A. (2019). Bioproducts from Euglena gracilis: Synthesis and Applications. Frontiers in Bioengineering and Biotechnology, 7 (108), 1-16. https://doi.org/10.3389/fbioe.2019.00108. Goncalves, E.C., Wilkie, A.C., Kirst, M., & Rathinasabapathi, B. (2016). Metabolic regulation of triacylglycerol accumulation in the green algae: Identification of potential targets for engineering to improve oil yield. Plant Biotechnology Journal, 14, 1649–1660. https://doi.org/10.1111%2Fpbi.12523. Hanief, S., Prasakti, L., Pradana, Y.S., Cahyono, R.B., & Budiman, A. (2020). Growth kinetic of Botryococcus braunii microalgae using Logistic and Gompertz Models. AIP Conference Proceedings 2296(1). https://doi.org/10.1063/5.0030459. Hoekman, S.K., Broch, A., Robbins, C., Ceniceros, E., & Natarajan M. (2012). Review of biodiesel composition, properties, and specifications. Renewable and Sustainable Energy Reviews, 16, 143–169. https://doi.org/10.1016/j.rser.2011.07.143. Hounslow, E., Evans, C.A., Pandhal, J., Sydney,T., Couto, N., Pham, T.K., Gilmour, D.J., Wright, P.C. (2021). Quantitative proteomic comparison of salt stress in Chlamydomonas reinhardtii and the snow alga Chlamydomonas nivalis reveals mechanisms for salt-triggered fatty acid accumulation via reallocation of carbon resources. Biotechnology for Biofuels, 14 (121), 1-25. https://doi.org/10.1186/s13068-021-01970-6. Huflejt, M.E., Tremolieres, A., Pineau, B., Lang, J.K., Hatheway, J., & Packer L. (1990). Changes in membrane lipid composition during saline growth of fresh water Cyanobacterium synechococcus 6311. Plant Physiology, 94, 1512-1521. 0032-0889/90/94/1512/1 0/$01 .00/0. Ilman, A.M., Scragg, A.H., & Shales, S.W. (2000). Increase in Chlorella strain calorific values when grown in low nitrogen medium. Enzyme and Microbial Technology, 27 (8), 631-635. https://doi.org/10.1016/s0141-0229(00)00266-0. Islam, M.A., Magnusson, M., Brown, R.J., Ayoko, G.A., Nabi, M.N., & Heimann, K. (2013). Microalgal species selection for biodiesel production based on fuel properties derived from fatty acid profiles. Energies, 6, 5676–5702. https://www.mdpi.com/1996-1073/6/11/5676#. Ji, C., Mao, X., Hao, J., Wang, X., Xue, J., Cui, H., & Li, R. (2018b). Analysis of bZIP transcription factor family and their expressions under salt stress in Chlamydomonas reinhardtii. International Journal of Molecular Science, 19 (9), 1-19. https://doi.org/10.3390/ijms19092800. Ji, X., Cheng, J., Gong, D., Zhao, X., Qi, Y., & Su, Y. (2018a). The effect of NaCl stress on photosynthetic efficiency and lipid production in freshwater microalga—Scenedesmus obliquus XJ002. Science of Total Environment, 633, 593–599. https://doi.org/10.1016/j.scitotenv.2018.03.240. Jin, E.S., Polle, J.E., Lee, H.K., Hyun, S.M., & Chang, M. (2003). Xanthophylls in microalgae: From biosynthesis to biotechnological mass production and application. Journal of Microbiology and Biotechnology, 13 (2), 165–174. https://sciwatch.kiost.ac.kr/handle/2020.kiost/5525. Jump, D.B. (2002). The biochemistry of n-3 polyunsaturated fatty acids. Journal of Biological Chemistry, 277, 8755–8758. https://doi.org/10.1074/jbc.r100062200. Kakarla, R., Choi, J.W., Yun, J.H., Kim, B.H., Heo, J., Lee, S., Cho, D.H., Ramanan, R., & Kim, H.S. (2018). Application of high-salinity stress for enhancing the lipid productivity of Chlorella sorokiniana HS1 in a two-phase process. Journal of Microbiology, 56 (1), 56-64. https://doi.org/10.1007/s12275-018-7488-6. Kirst, G.O. (1989). Salinity tolerance of eukaryotic marine algae. Annual Review of Plant Physiology 41: 21–53. https://doi.org/10.1146/annurev.pp.41.060190.000321. Kumar, S.S., Basu, S., Gupta, S., Sharma, J., & Bishnoi, N. R. (2019). Bioelectricity generation using sulphate reducing bacteria as anodic and microalgae as cathodic biocatalysts. Biofuels, 10, 81–86. http://dx.doi.org/10.1080/17597269.2018.1426161. Lartigue, J., Neill, A., Hayden, B.L., Pulfer, J., & Cebrian, J. (2003). The impact of salinity fluctuations on net oxygen production and inorganic nitrogen uptake by Ulva lactuca (Chlorophyceae). Aquatic Botany, 75 (4), 339-350. https://doi.org/10.1016/S0304-3770(02)00193-6. Lawton, R.J., Nys, R.D., Magnusson, M.E., & Paul, N.A. (2015). The effect of salinity on the biomass productivity, protein and lipid composition of a freshwater microalga. Algal Research, 12, 213-220. http://dx.doi.org/10.1016/j.algal.2015.09.001. Liu, W., Ming, Y., Li, P., & Huang, Z. (2012) Inhibitory effects of hypo-osmotic stress on extracellular carbonic anhydrase and photosynthetic efficiency of green alga Dunaliella salina possibly through reactive oxygen species formation. Plant Physiology and Biochemistry, 54, 43–48. https://doi.org/10.1016/j.plaphy.2012.01.018. Massyuk, N.P., & Abdula, E.G. (1969). First experiment of growing carotene-containing algae under semi-industrial conditions. Ukr. Bot. Zh 26: 21–27. Miquel, M & Browse, J. (1995). Role of polyunsaturated fatty acid s in growth and development of Arabidopsis. In: Plant Lipid Metabolism. © Springer Science Business Media Dordrecht, pp 237–272. Mirizadeh, S., Nosrati, M., & Shojaosadati, S. A. (2020). Synergistic effect of nutrient and salt stress on lipid productivity of Chlorella vulgaris through two-stage cultivation. Bioenergy Research, 13, 507-517. https://link.springer.com/article/10.1007/s12155-019-10077-8. Olabi, A. G., Shehata, N., Sayed, E.T., Rodriguez, C., Anyanwu, R.C., Russel, C., & Abdelkareem, M.A. (2023). Role of microalgae in achieving sustainable development goals and circular economy. Science of the Total Environment, 854, https://doi.org/10.1016/j.scitotenv.2022.158689. Pandit, P.R., Fulekar, M.H., & Karuna, M.S.L. (2017) Effect of salinity stress on growth, lipid productivity, fatty acid composition, and biodiesel properties in Acutodesmus obliquus and Chlorella vulgaris. Environmental Science Pollution Research, 24, 13437-13451. https://doi.org/10.1007/s11356-017-8875-y. Pasha, M.K., Dai, L., Liu, D., Guo, M., & Du, W. (2021). An overview to process design, simulation and sustainability evaluation of biodiesel production. Biotechnology for Biofuels, 14, (129): 1-23. https://doi.org/10.1186/s13068-021-01977-z. Peng, C., Lee, J.W., Sichani, H.T., & Ng, J.C. (2015). Toxic effects of individual and combined effects of BTEX on Euglena gracilis. Journal of Hazardous Materials, 284, 10–18. https://doi.org/10.1016/j.jhazmat.2014.10.024. Phukoetphim, N., Salakkam, A., Laopaiboon, P., & Laopaiboon L. (2017). Kinetic models for batch ethanol production from sweet sorghum juice under normal and high gravity fermentations: Logistic and modified Gompertz models. Journal of Biotechnol, 243, 69- 75. https://doi.org/10.1016/j.jbiotec.2016.12.012. Piotrowska, A., & Czerpak, R. (2009). Cellular response of light/dark grown green alga Chlorella vulgaris Beijerinck (Chlorophyceae) to Exogenous Adenine and Phenylurea-Type Cytokinins. Acta Physiologiae Plantarum, 31, 573-585. http://dx.doi.org/10.1007/s11738-008-0267-y. Pruvost, J., Vooren, G.V., Gouic, B.L., Mossion, A.C., & Legrand, J. (2011). Systematic investigation of biomass and lipid productivity by microalgae in photobioreactors for biodiesel application. Bioresource Technology, 102 (1), 150-158. https://doi.org/10.1016/j.biortech.2010.06.153. Reed, R.H., Collins, J.C., & Russel, G. (1980). The influence of Variations in salinity upon photosynthesis in the marine alga Porhyra purpurea (ROTH) C. AG. (Rhodophyta, Bangiales). Zeitschrift-fur-Pflanzenphysiologie, 98 (2), 183-187. https://doi.org/10.1016/S0044-328X(80)80231-5. Rismani, S., & Shariati, M. (2017). Changes of the total lipid and omega-3 fatty acid contents in two microalgae Dunaliella salina and Chlorella vulgaris under salt stress. Brazilian Archieves Biology and Technology, 60, 1–11. https://doi.org/10.1590/1778-4324-errata-2018999909. Romanenko, E.A., Romanenko, P.A., Babenko, L.M., & Kosakovskaya, I.V. (2017). Salt stress effects on growth and photosynthetic pigments’ content in algoculture of acutodesmus dimorphus (Chlorophyta). International Journal on Algae, 19, 271–282. DOI: 10.1615/InterJAlgae.v19.i3.70. Roy, S.J., Negrao, S., & Tester, M. (2014). Salt resistant crop plants. Current Opinion in Biotechnology, 26, 115-124. https://doi.org/10.1016/j.copbio.2013.12.004. Sánchez, J.F., Fernández, J.M., Acién, F.G., Rueda, A., Pérez-Parra, J., & Molina, E. (2008). Influence of culture conditions on the productivity and lutein content of the new strain Scenedesmus almeriensis. Process Biochemistry, 43, 398–405. https://doi.org/10.1016/j.procbio.2008.01.004. Shen, Q. H., Gong, Y.P., Fang, W.Z., Bi, Z.C., Cheng, L.H., Xu, X.H., & Chen, H. L. (2015). Saline wastewater treatment by Chlorella vulgaris with simultaneous algal lipid accumulation triggered by nitrate deficiency. Bioresource Technology, 193, 68– 75. https://doi.org/10.1016/j.biortech.2015.06.050. Sinetova, M.A., Sidorov, R.A., Madvedeva, A.A., Starikov, A.Y., Markelova, A.G., Allakhverdiev, S.I., & Los, D.A. (2021). Effect of salt stress on physiological parameters of microalgae Vischeria punctata starin IPPAS H-242, a superproducer of eicosapentanoic acid. Journal of Biotechnology, 331, 63-73. https://doi.org/10.1016/j.jbiotec.2021.03.001. Srivastava, G., Nishchal., & Goud, V.V. 2017. Salinity induced lipid production microalgae and cluster analysis (ICCB 16-BR_047). Bioresource Technology, 242, 244-252. http://dx.doi.org/10.1016/j.biortech.2017.03.175. Tanaka, R and Tanaka, A. (2011). Chlorophyll cycle regulates the construction and destruction of the light-harvesting complexes. Biochimica et Biophysica Acta-(BBA)-Bioenergetics,1807 (8), 968-976. https://doi.org/10.1016/j.bbabio.2011.01.002. Tietel, Z., Wikoff, W.R., Kind, T., Ma, Y., & Fiehn, O. (2019). Hyperosmotic stress in Chlamydomonas induces metabolomic changes in biosynthesis of complex lipids. European Journal of Phycology, 55, 11–29. https://doi.org/10.1080/09670262.2019.1637547. Timotius, V., Suyono, E.A., Suwanti, L.T., Koerniawan, M.D., Budiman, A., & Siregar, U.J. (2022). The content of lipid, chlorophyll and carotenoid of Euglena sp. under various salinities. Asia Pacific Journal of Molecular Biology and Biotechnology, 30 (3), 114-122. https://doi.org/10.35118/apjmbb.2022.030.3.10. Tomiyama, T., Kurihara, K., Ogawa, T., Maruta, T., Ogawa, T., Ohta, D., Sawa Y., & Ishikawa, T. (2017). Wax Ester Synthase/ Diacylglycerol Acyltransferase Isoenzymes Play a Pivotal Role in Wax Ester Biosyinthesis in Euglena gracilis. Scientific Reports, 7:13504, 1-13. https://doi.org/10.1038/s41598-017-14077-6. Toyama, T., Hanoka, T., Yamada, K., Suzuki, K., Tanaka, Y., Morikawa, M., & Mori, K. (2019). Enhanced production of biomass and lipids by Euglena gracilis via co-culturing with a microalga growth-promoting bacterium, Emticicia sp. EG3. Biotechnology for Biofuels, 12 (205), 1-12. https://doi.org/10.1186/s13068-019-1544-2. Wan, Afifudeen C.L., Loh, S.H., Aziz, A., Takahashi, K., Effendy. A.W.M., & Cha, T.S. (2021). Double-high in palmitic and oleic acids accumulation in a non-model green microalga, Messastrum gracile SE-MC4 under nitrate-repletion and -starvation cultivations. Scientific Reports, 11, 1–14. https://doi.org/10.1038/s41598-020-79711-2. Wang, N., Qian, Z., Luo, M., Fan, S., Zhang, X., & Zhang, L. (2018). Identification of salt stress responding genes using transcriptome analysis in green alga Chlamydomonas reinhardtii. International Journal of Molecular Science, 19 (11), 3359: 1-16. https://doi.org/10.3390/ijms19113359. Yao, C. H., Ai, J.N., Cao, X.P., & Xue, S. (2013). Salinity manipulation as an effective method for enhanced starch production in the marine microalga Tetraselmis subcordiformis. Bioresource Technology, 146, 663-671. https://doi.org/10.1016/j.biortech.2013.07.134. Yokoi, S., Bressan, R., & Hasegawa, P.M. (2002). Salt stress tolerance of plants. JIRCAS Working Report, 25-33. Yun, C.J., Hwang, K.O., Han, S.S., & Ri, H.G. (2019). The effect of salinity stress on the biofuel production potential of freshwater microalgae Chlorella vulgaris YH703. Biomass Bioenergy, 127, 1-7. http://dx.doi.org/10.1016/j.biombioe.2019.105277. Zhang, T.Y., Hu, H.Y., Wu, Y.H., Zhuang, L.L., Xu, X.Q., Wang, X.X., & Dao, G.H. (2016). Promising solutions to solve the bottlenecks in the large-scale cultivation of microalgae for biomass/ bioenergy production. Renewable and Sustainable Energy Reviews, 60, 1602-1614. https://doi.org/10.1016/j.rser.2016.02.008. Zhekisheva, M., Boussiba, S., Khozin-Goldberg, I., Zarka, A., & Cohen, Z. (2002). Accumulation of oleic acid in Haematococcus pluvialis (chlorophyceae) under nitrogen starvation or high light is correlated with that of astaxanthin esters1. Journal of Phycology, 38, 325–331. https://doi.org/10.1046/j.1529-8817.2002.01107.x.

Refbacks

  • There are currently no refbacks.



Creative Commons License

ISSN : 2089-5690(print), E-ISSN : 2406-9272(online)
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.