Profil Kimia dan Aktivitas Antibakteri Fraksi Aktif Nannochloropsis sp. sebagai Senyawa Penghambat Bakteri Penyebab Gangguan Kesehatan Mulut
Abstract
Abstrak
Salah satu penyebab masalah kesehatan mulut adalah bakteri. Mikroalga jenis Nannochloropsis sp. diketahui memiliki senyawa kimia yang dapat menghambat pertumbuhan bakteri seperti asam lemak dan fenol. Studi ini bertujuan untuk mengetahui potensi senyawa yang terkandung dalam Nannochloropsis sp. yang dapat menghambat pertumbuhan bakteri yang menyebabkan gangguan kesehatan mulut, dalam hal ini bau mulut dan plak gigi. Bakteri yang digunakan pada uji ini adalah Streptococcus mutans, Streptococcus sanguinis, dan Porphyromonas gingivalis. Selanjutnya profil kimia fraksi aktifnya dianalisis menggunakan kromatografi gas spektrometri massa (KG-SM). Biomassa Nannochloropsis sp. dimaserasi secara berturut-turut menggunakan pelarut n-heksana, etil asetat, dan etanol. Aktivitas antibakteri ekstrak diuji dengan metode difusi menggunakan kertas cakram. Selanjutnya, ekstrak etanol yang paling aktif difraksinasi menggunakan kolom silika G60 dengan pelarut n-heksana, etil asetat, dan etanol. Hasil fraksinasi (fraksi A dan B) kemudian diuji aktivitas antibakterinya. Fraksi A diketahui lebih aktif dibanding fraksi B, dengan diameter zona hambat fraksi A 15,5 mm (terhadap S. mutans); 16,8 mm (S. sanguinis) dan 16,1 mm (P. gingivalis) pada konsentrasi ekstrak 10 mg/mL dan dikatagorikan mempunyai respon hambatan pertumbuhan bakteri yang kuat. Hasil identifikasi fraksi A menggunakan KG-SM dibandingkan dengan spektra fragmentasi database WILEY 10N.14 dan diperoleh sepuluh senyawa dengan tingkat kemiripan ≥ 90%. Senyawa-senyawa tersebut diduga berperan dalam aktivitas antibakteri. Oleh karena itu, fraksi A dari ekstrak etanol Nannochloropsis sp. berpotensi sebagai bahan untuk formulasi obat kumur pencegah bau mulut dan plak gigi.
Abstract
One of the causes of oral health problems is bacteria contamination. The microalgae of Nannochloropsis sp., contains chemical compounds that can inhibit bacterial growth, such as fatty acids and phenols. The objective of the study is to determine the potential compounds of Nannochloropsis sp., which can inhibit the growth of bacteria that cause bad breath (halitosis) and dental plaque. The bacteria used in this test were Streptococcus mutans, Streptococcus sanguinis, and Porphyromonas gingivalis. Futhermore, chemical profiles of the active fractions were determined using a gas chromatography-mass spectrometry (GC-MS). The biomass of Nannochloropsis sp. was macerated successively using n-hexane, ethyl acetate, and ethanol as solvents. The extract was tested for its antibacterial activity by diffusion method using disc paper. The most active ethanol extract was fractionated using a silica G60 column with n-hexane, ethyl acetate, and ethanol. The results of the fractionation (A and B fractions) were tested for their antibacterial activity. The A fraction was more active than the B fraction with the inhibition zone diameters of the A fraction were 15.5 mm (against S. mutans), 16.8 mm (S. sanguinis), and 16.1 mm (P. gingivalis) at extract concentration of 10 mg/mL and categorized as a strong bacterial growth inhibition response. The A fraction was identified using GC-MS and compared with the fragmentation spectra based on the WILEY 10N.14 database. The identification obtained ten compounds with > 90% similarity. These compounds were thought to play a role in the antibacterial activity. Therefore, the A fraction of ethanol extract from Nannochloropsis sp. can potentially be used in mouthwash formulation to prevent halitosis and dental plaque.
Keywords
Full Text:
PDF (Bahasa Indonesia)References
Agustini, N. W. S., Afriastini, M., & Maulida,Y. (2014). Potensi asam lemak dari mikroalga Nannochloropsis sp. sebagai antioksidan dan antibakteri. Proceeding Biology Education Conference, 11(1), 149-155.
Alsenani F., Tupally K. R., Chua E. t., Atanahy E., Alsufyani H., Parekh H. S. & Schenk P. M. ( 2020). Evaluation of microalgae and cyanobacteria as potential sources of antimicrobial compounds. Saudi Pharmaceutical Journal, 28, 1834-1841. doi: 10.1016/j.jsps.2020.11.010
Carlsson, A. S., Van beilen, J. B., Moller, R., & Clayton, D. (2007). Micro and Macro Algae: Utility for Industrial Applications, Bowles, D. (ed.), Cpl Press, Newbury, UK.
D’Alessandro, E. B., & Antoniosi Filho, N. R. (2016). Concepts and studies on lipid and pigments of microalgae: A review. Renewable and Sustainable Energy Reviews, 58, 832–841. doi: 10.1016/j.rser.2015.12.162
de Sousa L. L. da Hora D. S., Sales E. A., & Perelo LW. (2014). Cultivation of Nannochloropsis sp. in brackish groundwater supplemented with municipal wastewater as a nutrient source. Brazilian Archives of Biology and Technology, 57(2), 171-177. doi : 10.1590/S1516-89132014000200003
Fithriani, D., Amini, S., Melanie, S., & Susilowati, R. (2015). Uji fitokimia, kandungan total fenol dan aktivitas antioksidan mikroalga Spirulina sp., Chlorella sp., dan Nannochloropsis sp. Jurnal Pascapanen dan Bioteknologi Kelautan dan Perikanan, 10(2), 101-109.doi: 10.15578/jpbkp.v10i2.222
Freire, I., Cortina-Burgueño, A., Grille, P., Arizcun Arizcun, M., Abellán, E., Segura, M., Federico W., & Otero, A. (2016). Nannochloropsis limnetica: A freshwater microalga for marine aquaculture. Aquaculture, 459, 124–130. doi: 10.1016/j.aquaculture.2016.03.015
Fogg, G.E. and Thake, B. (1987) Algae Cultures and Phytoplankton Ecology. 3rd Edition, The University of Winsconsins Press, Ltd., London.
Gupta, R. S. (2011). Origin of diderm (Gram-negative) bacteria: antibiotic selection pressure rather than endosymbiosis likely led to the evolution of bacterial cells with two membranes. Antonie Van Leeuwenhoek, 100(2), 171-182. doi : 10.1007/s10482-011-9616-8
Harborne, J. B. (1987). Metode fitokimia. Terjemahan dari Phytochemical Methods oleh Kosasih Padmawinata & Iwang Sudiro. Bandung: Penerbit ITB. Hlm: 27
Heinrich, M., Barnes, J., Prieto-Garcia, J., Gibbons, S., & Williamson, E.. (2017). Fundamental of pharmacognosy and phytotherapy (3rd) . Hungary: Elsevier, 414-41
Islam, M. T., Ali, E. S., Uddin, S. J., Shaw, S., Islam, M. A., Ahmed, M. I., & Atanasov, A. G. (2018). Phytol: A review of biomedical activities. Food and chemical toxicology, 121, 82-94. doi: 10.1016/j.fct.2018.08.032
Juliana V., Budiana W., & Zannah, A. K. (2020) Uji aktivitas antioksidan ekstrak mikroalga Porphyridium cruentum menggunkan metode peredaman radikal bebas DPPH. Journal of Pharmacopolium. 3(3), 157-165.
Jamilah, J. (2015). Evaluasi keberadaan gen catp terhadap resistensi kloramfenikol pada penderita demam tifoid. In Aziz, I. R. .(Ed.), Prosiding Seminar Nasional Biologi, 1(1).
Kusmiyati., & Agustini. N. W. S., (2007). Uji aktivitas antibakteri dari mikroalga Porphyridium cruentum. Biodiversitas, 8(1), 48-53
Krzeminska, I., Pawlik-Skoronska B., Trzeinka M., Tys J. (2014). Influence of photoperiods on the growth rate and biomass productivity of green microalgae. Bioprocess Biosyst. Eng, 37, 735-741. doi: 10.1007/s00449-013-1044-x
Little, S. M., Senhorinho, G. N. A., Saleh, M., Basiliko, N. & Scott, J. A., (2021). Antibacterial compunds in green microalgae from extreme enviroments : a review. Algae, 36(1), 61-72. doi: 10.4490/algae.2021.36.3.6
Plaza, M., Santoyo, S., Jaime, L., García-Blairsy Reina, G., Herrero, M., Señoráns, F. J., & Ibáñez, E. (2010). Screening for bioactive compounds from algae. Journal of Pharmaceutical and Biomedical Analysis, 51(2), 450–455. doi:10.1016/j.jpba.2009.03.016
López, Y., & Soto, S. M. (2020). The preventing usefulness biofilm microalgae infections compounds for preventing biofilm infections. Antibiotics, 9, 9. doi: 10.3390/antibiotics9010009
Lukas, A. (2012). Formulasi obat kumur gambir dengan tambahan peppermint dan minyak cengkeh. Jurnal Dinamika Penelitian Industri, 23(2), 67-76.
Lumempouw, L. I., Jessy ,P., Lidya I. M., & Edi S. (2019). Potensi antioksidan dari ekstrak etanol tongkol jagung (Zea mays L.). Chemistry Progress, 5(1), 49-56. doi: 10.35799/cp.5.1.2012.654
Makkawi, H., Hoch, S., Burns, E., Hosur, K., Hajishengallis, G., Kirschning, C. J., & Nussbaum, G. (2017). Porphyromonas gingivalis stimulates TLR2-PI3K signaling to escape immune clearance and induce bone resorption independently of MyD88. Frontiers in cellular and infection microbiology, 7, 359. doi: 10.3389/fcimb.2017.00359
Maltsev, Y., Maltseva K., Kulikovskiy M., & Maltseva S. (2021). Influence of light conditions on microalgae growth and content of lipids, carotenoids, and fatty acid composition. Biology, 10,1060. doi: 10.3390/biology10101060
Nolla-Ardèvol, V., Strous, M., & Tegetmeyer, H. E. (2015). Anaerobic digestion of the microalga Spirulina at extreme alkaline conditions: biogas production, metagenome, and metatranscriptome. Frontiers in microbiology, 6, 597. doi: 10.3389/fmicb.2015.00597
Oktarina D., Sumpono & Elvia R. (2017). Uji efektivitas asap cair cangkang buah Hevea brazilica terhadap aktivitas antibakteri Escherichia coli. Alotrop Jurnal Pendidikan dan Ilmu Kimia, 1(1),1-5. doi: 10.33369/atp.v1i1.2704
Ordog V., W. A. Stirk, R. Lenobel, M. Bancrova, M. Strnad, J. van Staden, J. Szigeti & L. N´emeth. (2004). Screening microalgae for some potentially useful agricultural and pharmaceutical secondary metabolites. Journal of Applied Phycology, 16, 309–314. doi: 10.1023/B:JAPH.0000047789.34883.aa
Pranoto, E. N., Ma'ruf, W. F., & Pringgenies, D. (2012). Kajian aktivitas bioaktif ekstrak teripang pasir (Holothuria scabra) terhadap jamur Candida albicans. Jurnal Pengolahan dan Bioteknologi Hasil Perikanan, 1(2), 1-8.
Raman, B. V., Samuel, L. A., Saradhi, M. P., Rao, B. N., Krishna, N. V., Sudhakar, M., & Radhakrishnan, T. M. (2012). Antibacterial, antioxidant activity and GC-MS analysis of Eupatorium odoratum. Asian Journal of Pharmaceutical and Clinical Research, 5(2), 99-106.
Shannon, E., & Abu-Ghannam, N. (2016). Antibacterial derivatives of marine algae: An overview of pharmacological mechanisms and applications. Marine drugs, 14(4), 81. doi: 10.3390%2Fmd14040081
Song, Y., & Cho, S. K. (2015). Phytol induces apoptosis and ROS-mediated protective autophagy in human gastric adenocarcinoma AGS cells. Biochemistry and Analytical Biochemistry, 4(4), 1.
Syeda, A. M., & Riazunnisa, K. (2020). Data on GC-MS analysis, in vitro anti-oxidant and anti-microbial activity of the Catharanthus roseus and Moringa oleifera leaf extracts. Data in brief, 29, 105258. doi: 10.1016/j.dib.2020.105258
Tanih, N. F., & Ndip, R. N. (2013). The acetone extract of Sclerocarya birrea (Anacardiaceae) possesses antiproliferative and apoptotic potential against human breast cancer cell lines (MCF-7). The scientific world journal, 2013. doi: 10.1155/2013/956206
Thodar, K. (2018, 15 April). The cell envelope: capsules, cell walls and cell membranes. http://textbookofbacteriology.net/structure_4.html
Wang, M., Zhang, J., He, S., & Yan, X. (2017). A review study on macrolides isolated from cyanobacteria. Marine drugs, 15(5), 126. doi: 10.3390/md15050126
Wardhani, R. A. P., & Supartono, S. (2015). Uji aktivitas antibakteri ekstrak kulit buah rambutan (Nephelium lappaceum L.,) pada bakteri. Indonesian Journal of Chemical Science, 4(1). doi: 10.15294/ijcs.v4i1.4766
Wei, L. S., Wee, W., Siong, J. Y. F., & Syamsumir, D. F. (2011). Characterization of anticancer, antimicrobial, antioxidant properties and chemical compositions of Peperomia pellucida leaf extract. Acta Medica Iranica, 670-674.
Xie, Y., Yang, W., Tang, F., Chen, X., & Ren, L. (2014). Antibacterial activities of flavonoids: structure-activity relationship and mechanism. Current Medicinal Chemistry, 22(1), 132–149. doi: 10.2174/0929867321666140916113443
Yoon, B. K., Jackman, J. A., Valle-González, E. R., & Cho, N. J. (2018). Antibacterial free fatty acids and monoglycerides: biological activities, experimental testing, and therapeutic applications. International journal of molecular sciences, 19(4), 1114. doi: 10.3390/ijms19041114
DOI: http://dx.doi.org/10.15578/jpbkp.v17i1.781
Article Metrics
Abstract view : 679 timesPDF (Bahasa Indonesia) - 326 times
Refbacks
- There are currently no refbacks.
JPBKP adalah Jurnal Ilmiah yang terindeks :
ISSN : 1907-9133(print), ISSN : 2406-9264(online)
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.