Optimasi Produksi Hidrolisat Protein Ikan Kuniran (Upeneus sulphureus) Secara Enzimatis
Abstract
Karakteristik hidrolisat protein ikan (HPI) dipengaruhi oleh kondisi proses hidrolisisnya. Optimasi produksi HPI kuniran (Upeneus sulphureus) telah dilakukan secara enzimatis dengan perlakuan perbandingan ikan dan air (1:1 dan 1:2) dan penambahan enzim protease 500 U, 1.000 U, dan 1.500 U per 25 g ikan. Nilai derajat hidrolisis (DH) HPI digunakan untuk menentukan kondisi optimum produksi HPI. Berdasarkan kondisi optimum tersebut, produksi HPI skala diperbesar dilakukan dengan 500 g ikan kuniran sebagai bahan baku. Karakteristik HPI skala diperbesar yang diamati adalah karakteristik kimia (air, abu, protein, lemak, asam amino, daya cerna protein, peptida, dan berat molekul) dan fisik (warna, aktivitas, dan stabilitas emulsi). Hasil penelitian menunjukkan bahwa perbandingan ikan, air, dan jumlah enzim berpengaruh terhadap nilai DH HPI. Pada skala produksi HPI diperbesar, karakteristik kimia dari HPI kuniran secara umum dipengaruhi oleh perbedaan perlakuan hidrolisis, tetapi tidak sifat fisiknya. Perbedaan kandungan protein, abu, dan peptida dari HPI lebih dominan dipengaruhi oleh perbedaan perlakuan perbandingan ikan dan air, sedangkan kombinasi perlakuan jumlah enzim dan perbandingan ikan dan air berpengaruh terhadap kandungan asam amino dan daya cerna protein HPI. Secara umum, perlakuan hidrolisis menggunakan enzim 1.000 U/25 g dan perbandingan ikan dan air 1:1 (kode E1000A11) memberikan perlakuan terbaik yang terlihat dari kandungan protein, asam amino, peptida, dan daya cerna tertinggi dibandingkan perlakuan lain. Kandungan kimia dan daya cerna yang tinggi tersebut memberikan peluang aplikasi HPI sebagai penambah nutrisi bagi balita.
Title: Optimizaton of Enzymatically Production of Fish Protein Hydrolysate from Kuniran (Upeneus sulphureus)
The characteristics of fish protein hydrolyzate (FPH) are affected by their hydrolysis process conditions. Production optimization of FPH kuniran (Upeneus sulphureus) has been carried out enzymatically with treatments of fish and water ratio (1: 1 and 1: 2) and protease enzymes 500 U; 1,000 U, and 1,500 U per 25 g fish. The degree of hydrolysis (DH) value of FPH was used to determine the optimum conditions of FPH production. Based on this optimum condition, the enlarged production of FPH (500 g of fish) was carried out. Chemical characteristics (moisture, ash, protein, fat, amino acids, protein digestibility, peptide, and molecular weight) and physical (color, the emulsion activity, and stability) of FPH from enlarged production were analyzed. The results showed that the ratio of fish and water and the amount of enzyme affect the DH value of FPH. At the enlarged scale, the chemical characteristics of FPH kuniran were generally influenced by different hydrolysis treatments but not their physical properties. The differences in protein, ash, and peptide content of FPH were more dominantly affected by differences in the fish and water ratio, while the combination treatments of the enzymes and the ratio of fish-water affected the amino acid content and protein digestibility of FPH. In general, the hydrolysis treatment using a 1,000 U enzyme/25 g fish and the ratio of fish and water 1:1 (code E1000A11) was the optimum treatment as seen from the highest protein, amino acid, peptide, and protein digestibility compared to other treatments. The high chemical content and digestibility of FPH provide an opportunity application of FPH as a nutritional enhancer for toddlers.
Keywords
Full Text:
PDFReferences
Ariyani, F., Saleh, M., Tazwir, T., & Hak, N. (2003). Optimasi Proses Produksi Hidrolisat Protein Ikan (HPI) dari Mujair (Oreochromrb mossambicusl). Jurnal Penelitian Perikanan Indonesia, 9(5), 11. doi: 10.15578/jppi.9.5.2003.11-21
Auwal, S. M., Zarei, M., Abdul-Hamid, A., & Saari, N. (2017). Optimization of bromelain-aided production of angiotensin I-converting enzyme inhibitory hydrolysates from stone fish using response surface methodology. Marine Drugs, 15(4), 104. doi: 10.3390/md15040104
Benjakul, S., & Morrissey, M. T. (1997). Protein hydrolysates from Pacific whiting solid wastes. Journal of Agricultural and Food Chemistry, 45(9), 3423–3430. doi: 10.1021/jf970294g
Badan Standardisasi Nasional (BSN). (2010). SNI 01-2354- (2010). Cara Uji Kimia pada Produk Perikanan. Jakarta.
Badan Standardisasi Nasional (BSN). (2015). SNI 01-2354- (2015). Cara Uji Kimia pada Produk Perikanan. Jakarta.
Badan Standardisasi Nasional (BSN). (2017). SNI 01-2354- (2017). Cara Uji Kimia pada Produk Perikanan. Jakarta.
Chalamaiah, M., Hemalatha, R., & Jyothirmayi, T. (2012). Fish protein hydrolysates: proximate composition, amino acid composition, antioxidant activities and applications: a review. Food Chemistry, 135(4), 3020-3038. doi: 10.1016/j.foodchem.2012.06.100
Fawzya, Y. N., Chasanah, E., Martosuyono, P., Zilda, D. S., Susilowati, R., Oktavia, D. A., … Patantis, G. (2017). Laporan Teknis Penelitian Teknologi Produksi Hidrolisat Protein Ikan Secara Enzimatis. Jakarta.
Fernandes, P. (2016). Enzymes in fish and seafood processing. Frontiers in Bioengineering and Biotechnology, 4, 59. doi: 10.3389/fbioe.2016.00059
Foh, M. B. K., Kamara, M. T., Amadou, I., Foh, B. M., & Xia, W. (2011). Chemical and physicochemical properties of tilapia (Oreochromis niloticus) fish protein hydrolysate and concentrate. International Journal of Biological Chemistry, 5(1), 21–36. doi: 10.3923/ijbc.2011.21.36
García Moreno, P. J., Pérez Gálvez, R., Espejo Carpio, F. J., Ruiz Quesada, C., Pérez Morilla, A. I., Martínez Agustín, O., … Guadix, E. M. (2017). Functional, bioactive and antigenicity properties of blue whiting protein hydrolysates: effect of enzymatic treatment and degree of hydrolysis. Journal of the Science of Food and Agriculture, 97(1), 299–308. doi: 10.1002/jsfa.7731
Gehrt, A. J. (1971). Pepsin-Digestibility Method for Animal Proteins. Journal of the Association of Official Analytical Chemists, 54(3), 669–680. doi: 10.1093/jaoac/54.3.669
Haider, S. R., Reid, H. J., & Sharp, B. L. (2012). Tricine-sds-page. In Protein electrophoresis (pp. 81–91). Springer.
He, S., Franco, C., & Zhang, W. (2013). Functions, applications and production of protein hydrolysates from fish processing co-products (FPCP). Food Research International, 50(1), 289–297. doi: 10.1016/j.foodres.2012.10.031
Herpandi, Huda, N., Ahmad, R., & Abdullah, W. N. W. (2016). Protein quality of hydrolyzed dark muscle protein of skipjack tuna (Katsuwonus pelamis). Turkish Journal of Fisheries and Aquatic Sciences, 16(1), 177–186. doi; 10.4194/1303-2712-v16_1_18
Hoyle, N. T., & Merritt, J. H. (1994). Quality of fish protein hydrolysates from herring (Clupea harengus). Journal of Food Science, 59(1), 76–79. doi: 10.1111/j.1365-2621.1994.tb06901.x
Hutchings, J. B., Luo, M. R., & Ji, W. (2012). Food appearance and expectations. Color in Food: Technological and Psychophysical Aspects, 3–10.
Kementerian Kelautan dan Perikanan. (2021). Statistik Produksi Perikanan. Retrieved August 22, 2021, from https://statistik.kkp.go.id/home.php?m=total&i=2#panel-footer
Kristinsson, H. G., & Rasco, B. A. (2000). Fish protein hydrolysates: production, biochemical, and functional properties. Critical Reviews in Food Science and Nutrition, 40(1), 43–81. doi: 10.1080/10408690091189266
Martosuyono, P., Fawzya, Y. N., Patantis, G., & Sugiyono, S. (2019). Enzymatic production of fish protein hydrolysates in a pilot plant scale. Squalen Bulletin of Marine and Fisheries Postharvest and Biotechnology, 14(2), 85–92. doi: 10.15578/squalen.v14i2.398
Nielsen, P. M., Petersen, D., & Dambmann, C. (2001). Improved method for determining food protein degree of hydrolysis. Journal of Food Science, 66(5), 642–646. doi: 10.1111/j.1365-2621.2001.tb04614.x
Nollet, L. M. L., & Toldrá, F. (2012). Food analysis by HPLC. CRC press.
Noman, A., Xu, Y., AL-Bukhaiti, W. Q., Abed, S. M., Ali, A. H., Ramadhan, A. H., & Xia, W. (2018). Influence of enzymatic hydrolysis conditions on the degree of hydrolysis and functional properties of protein hydrolysate obtained from Chinese sturgeon (Acipenser sinensis) by using papain enzyme. Process Biochemistry, 67, 19–28. doi: 10.1016/j.procbio.2018.01.009
Nurhayati, T., Salamah, E., Cholifah, , & Nugraha, R.. (2014). Optimasi Proses Pembuatan Hidrolisat Jeroan Ikan Kakap Putih. Jurnal Pengolahan Hasil Perikanan Indonesia, 17(1), 42–52. doi: 10.17844/jphpi.v17i1.8136
Nurhayati, T., Nurjanah, & Sanapi, C. H. (2013). Karakterisasi hidrolisat protein ikan lele dumbo (Clarias gariepinus). Jurnal Pengolahan Hasil Perikanan Indonesia, 16(3), 207–214. doi: 10.17844/jphpi.v16i3.8058
Pacheco-Aguilar, R., Mazorra-Manzano, M. A., & Ramírez-Suárez, J. C. (2008). Functional properties of fish protein hydrolysates from Pacific whiting (Merluccius productus) muscle produced by a commercial protease. Food Chemistry, 109(4), 782–789. doi: 10.1016/j.foodchem.2008.01.047
Prasetyo, D. Y. B., Sarmin, S., Setyastuti, A. I., & Kurniawati, A. (2020). Pengaruh perbedaan enzim proteolitik dan lama hidrolisa terhadap kualitas hidrolisat protein ikan dari limbah industri fillet Ikan Nila (Oreochromisniloticus (Linnaeus, 1758)). Jurnal Ilmu Kelautan Kepulauan, 3(2). doi: 10.33387/jikk.v3i2.2586
Putalan, R., Munifah, I., Nurhayati, T., & Chasanah, E. (2018). Antioxidant and ace inhibitor potential of stripe trevally fish (Selaroides leptolepis) hydrolysate. Squalen Bulletin of Marine and Fisheries Postharvest and Biotechnology, 13(1), 17–22. doi: 10.15578/squalen.v13i1.319
Siddik, M. A. B., Howieson, J., Fotedar, R., & Partridge, G. J. (2021). Enzymatic fish protein hydrolysates in finfish aquaculture: a review. Reviews in Aquaculture, 13(1), 406–430. doi: 10.1111/raq.12481
Srikanya, A., Dhanapal, K., Sravani, K., Madhavi, K., & Praveen, K. G. (2017). A study on optimization of fish protein hydrolysate preparation by enzymatic hydrolysis from tilapia fish waste mince. Int.J.Curr.Microbiol.App.Sci., 6(12), 3220–3229. doi: 10.20546/ijcmas.2017.612.375
Utomo, B. S. B., Suryanigrum, T. D., & Harianto, H. R. (2014). Optimization of enzymatic hydrolysis of fish protein hydrolysate (FPH) processing from waste of catfish fillet production. Squalen Bulletin of Marine and Fisheries Postharvest and Biotechnology, 9(3), 115–126. doi: 10.15578/squalen.v9i3.79
Volkert, M. A., & Klein, B. P. (1979). Protein dispersibility and emulsion characteristics of four soy products. Journal of Food Science, 44(1), 93–96. doi: 10.1111/j.1365-2621.1979.tb10014.x
Wiadnyana, N. N., Badrudin, B., & Aisyah, A. (2017). Tingkat pemanfaatan sumber daya ikan demersal di wilayah pengelolaan perikanan laut Jawa. Jurnal Penelitian Perikanan Indonesia, 16(4), 275–283. doi: 10.15578/jppi.16.4.2010.275-283
Witono, Y., Maryanto, M., Taruna, I., Masahid, A. D., & Cahyaningati, K. (2020). Aktivitas antioksidan hidrolisat protein ikan wader (Rasbora jacobsoni) dari hidrolisis oleh enzim calotropin dan papain. Jurnal Agroteknologi, 14(01), 44–57. doi: 10.19184/j-agt.v14i01.14817
Zamora-Sillero, J., Gharsallaoui, A., & Prentice, C. (2018). Peptides from fish by-product protein hydrolysates and its functional properties: An overview. Marine Biotechnology, 20(2), 118–130. doi: 10.1007/s10126-018-9799-3
DOI: http://dx.doi.org/10.15578/jpbkp.v16i2.782
Article Metrics
Abstract view : 969 timesPDF - 450 times
Refbacks
- There are currently no refbacks.
JPBKP adalah Jurnal Ilmiah yang terindeks :
ISSN : 1907-9133(print), ISSN : 2406-9264(online)
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.